PICO: search for dark matter with bubble chambers

Eric Vázquez Jáuregui Instituto de Física, UNAM

International Conference on High Energy Physics, ICHEP 2024 Prague, Czech Republic, July 19, 2024

PICO Collaboration

I. Arnquist, C.M. Jackson, B. Loer

C. Moore, N. Moss, A. Noble, M. Robert

Physics with bubble chambers

- 1970s: Neutrino Beam Physics
- Sensitive to MIPs
- Particle tracks visible
- Threshold << 1 keV
- Multi-ton chambers, multiple fluids

2000-today: Nuclear Recoil Detectors

- Dark matter searches with fluorocarbon bubble chambers
- Electron recoil blind
- \bullet Nuclear recoil threshold $\sim 3 {\rm keV}$
- Scalable at modest cost

PICO bubble chambers

• Target material: superheated CF_3I , C_3F_8, C_4F_{10} spin-dependent/independent

Could make a dark matter bubble chamber with any liquid!

- Particles interacting evaporate a small amount of material: bubble nucleation
- Four Cameras record bubbles
- Eight piezo-electric acoustic sensors detect sound
- Recompression after each event

Bubble chambers: Physics

- In a superheated fluid, energy deposition greater than E_{th} in a radius less than r_c will result in a bubble large enough to overcome surface tension (Seitz "Hot-Spike" Model)
- \bullet Low E or dE/dx result in smaller bubbles that immediately collapse
- Classical Thermodynamics:

$$p_{v} - p_{l} = \frac{2\sigma}{r_{c}}$$

$$E_{th} = 4\pi r_{c}^{2} \left(\sigma - T\frac{\partial\sigma}{\partial T}\right) + \frac{4}{3}\pi r_{c}^{3}\rho_{v}h$$
Surface energy
Latent heat

Bubble nucleation

Dependence of bubble nucleation on the total deposited energy and dE/dx

- Region of bubble nucleation at 15 psig
- Backgrounds: electrons, ²¹⁸Po, ²²²Rn
- Signal processes of Iodine, Fluorine and Carbon nuclear recoils

insensitive to electrons and gammas

Data-driven modeling of electron recoil nucleation in PICO C_3F_8 bubble chambers PRD 100, 082006 (2019)

Bubble chambers: signal

- Alpha decays: Nuclear recoil and 40 µm alpha track 1 bubble
- Neutrons: Nuclear recoils mean free path ~20 cm 3:1 multiple-single ratio in PICO-60
- Neutrinos or WIMPs: Nuclear recoil mean free path > 10¹⁰ cm 1 bubble

Bubble chambers: Acoustics

• Alphas are ~ 4 times louder than nuclear recoil bubbles

- $\bullet > 99.9\%$ discrimination against alpha events demonstrated
- Discovered by the PICASSO collaboration

Why bubble chambers?

- Zero background
- Large target mass
- Low energy threshold (a few keV, and down to eV for some fluids)
- Multiple target nuclei test expected cross section dependences on atomic number and nuclear spin (Fluorine, Iodine, Chlorine, Xenon, Argon, Bromine, Hydrogen...)
- Measure nuclear recoil energies (by varying threshold)
- No measure of nuclear recoil direction.

Meet the family: PICO bubble chambers

- COUPP4: a 2l CF_3I chamber run at SNOLAB in 2010 and 2012
- COUPP60: up to 40l CF₃I chamber run at SNOLAB 2013-14
- \bullet PICO-2L: a 2l C_3F_8 chamber run at SNOLAB 2013-14 and 2015-16
- PICO-60: up to 45l C_3F_8 chamber run at SNOLAB 2016-17
- PICO-40L: currently under commissioning and data taking
- PICO-500: future ton-scale experiment 2024-2026

PICO-60

PICO-40L:"Right side up" (RSU)

• Engineering:

demonstrate background reduction and technology improvements for PICO-500

- Focus on (neutron) background reduction
- Confirm "RSU" design used in prototype chambers

- Science: acquire one-year background-free exposure
- Factor of 5 improved sensitivity on PICO-60 limits

PICO-40L: current status

Commissioning and data taking

- Detector fully assembled and operational with water shield
- Thermally stable
- Stable long term event rates

- Excellent position reconstruction, detailed ray-tracing simulation
- Single/multiple scattering ratio 1:3 sensed by pressure transducers

PICO-40L: current status

Commissioning and data taking

- 10 piezoelectric sensors, acoustic during bubble formation
- 4 video cameras, images during bubble formation

• Dark matter search results from the complete exposure of the PICO-60 C₃F₈ bubble chamber PRD 100, 022001 (2019)

PICO-500: current status

Tonne-scale bubble chamber located in the Cube Hall at SNOLAB Under construction: parts arriving to SNOLAB! Study of dark matter models in PICO: photon-mediated dark matter-nucleus interactions

NREFT approach in **PICO**

- In the NREFT, the differential cross section is presented as the product of the WIMP response function and the Nuclear response function.
- In NREFT, the nucleus is not treated as a point particle, but its composite nature is reflected

$$\frac{d\sigma_T(v, E_r)}{dE_r} = \frac{2m_T}{4\pi v^2} \left[\frac{1}{(2j_{\chi} + 1)} \frac{1}{(2J + 1)} |\mathcal{M}_T|^2\right]$$

$$\frac{1}{(2j_{\chi}+1)}\frac{1}{(2J+1)}\sum_{spins}|\mathcal{M}_{T}|^{2} \equiv \sum_{k}\sum_{\tau=0,1}\sum_{\tau'=0,1}R_{k}\left(\vec{v}_{T}^{\perp2},\frac{\vec{q}^{2}}{m_{N}^{2}},\{c_{i}^{\tau}c_{j}^{\tau'}\}\right)W_{k}^{\tau\tau'}(\vec{q}^{2}b^{2})$$

$$k = M, \Sigma'', \Sigma', \Phi'', \Phi''M, \Delta, \Delta \Sigma'$$

 With this theory, 6 new nuclear response functions have been identified in addition to the classical SI/SD

Particle physics

Nuclear physics

WIMP response functions

Nuclear response functions

In this theory we have 11 operatos

$$\mathcal{L}_{\text{int}} = \sum_{N=n,p} \sum_{i} c_i^{(N)} \mathcal{O}_i \chi^+ \chi^- N^+ N^-$$

Anapole moment in PICO: results

The only possible electromagnetic moment for a Majorana fermion is the anapole moment since the magnetic and electric dipole moments vanish

Electric and magnetic moments in PICO: results

Assuming DM is a fermion with electromagnetic moments, the lowest order electromagnetic interaction is through the magnetic or electric dipole moments

Millicharged DM in PICO: results

Results on photon-mediated dark-matter-nucleus interactions from the PICO-60 C_3F_8 bubble chamber Phys. Rev. D 106, 042004 (2022) Study of dark matter models in PICO: inelastic dark matter

Inelastic dark matter

If dark matter can't scatter elastically, kinematical effects distinguish experiments

$$\delta_{\max} = \frac{1}{2} \mu_{\chi N} (v_e + v_{esc})^2$$
$$v_{\min}(E_R) = \frac{1}{\sqrt{2M_N E_R}} \left(\frac{M_N}{\mu_{\chi N}} E_R + \Delta\right)$$

1

- Expected in varied dark matter models
- Possible explanation for 511 keV γ -ray excess in galactic center and DAMA-LIBRA annual modulation
- kinetic energy must overcome mass splitting
- only scatter with heavier nuclei

Inelastic DM in PICO: results

Combined analysis with PICO-60 C_3F_8 and CF_3I data Leading limits on dark matter-nucleon scattering cross sections for inelastic dark matter interactions in a wide range of mass splittings and DM masses.

Inelastic DM in PICO: results

Analysis disfavors various scenarios, in a wide region of parameter space, that provide a feasible explanation of the signal observed by DAMA, (PICO CF₃I bubble chamber used iodine as the target material)

Inelastic DM in PICO: results

Search for inelastic dark matter-nucleus scattering with the PICO-60 CF_3I and C_3F_8 bubble chambers Phys. Rev. D 108, 062003 (2023)

Final remarks

- PICO bubble chambers are producing world-leading direct detection limits using fluorine targets
 - Best limits for spin-dependent WIMP-proton couplings
 - Leading results on photon-mediated DM-nucleus interactions and inelastic dark matter scenarios
 - PICO-40L is operational, running stable in a variety of operational modes, detailed analysis of the data is underway
 - PICO-500 is coming, construction during this year and in 2025

Stay tuned for news from PICO!