

The SABRE South Experiment at the Stawell Underground Physics Laboratory

Lachlan Milligan, on behalf of SABRE South

Annual Modulation of DM

annual modulation

- 1-6 keV nuclear recoils at a significance of 12.9 σ
- Is currently unresolved

for noise/background Lachlan Milligan - SABRE South, ICHEP2024

Anomaly best tested by similar, but improved, detectors:

- ANAIS Canfranc underground lab, Spain
- COSINE100 Yangyang lab, South Korea
- Cosinus LNGS, Italy (Nal, cryogenic, no Tl)
- SABRE SUPL, Australia and LNGS, Italy

Current tests of DAMA/LIBRA results are inconclusive

<u>A. Ianni IDM talk find higher than expected</u> correlation between 1-6 and 2-6 keV for ANAIS (0.42 vs. 0.2 background only) – unaccounted

Lachlan Milligan - SABRE South, ICHEP2024

The SABRE Collaboration

Detectors in two locations:

- SABRE North: Laboratori Nazionali del Gran Sasso (LNGS), Italy
- SABRE South: Stawell Underground Physics Laboratory (SUPL), Australia Dual hemisphere seasonal backgrounds opposite phase i.e. Muon induced

SABRE South is a first for Australia:

- First deep underground laboratory at 1025 m in southern hemisphere
- First underground dark matter experiment

Lab completed in 2022/2023, SABRE South to be assembled **2024-2025**

10^{-6} 10^{-6} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-1

Vertical overburden depth [km.w.e.]

MELBOURNE

The Stawell Underground Physics Laboratory

ATTER OF MELBOURNE

Stawell Underground Physics Laboratory (SUPL) has been completed, and **first detectors commissioned early 2024**

- SABRE South muon veto assembled in "telescope mode" for measurement of muon flux and angular spectrum
- Currently collecting data and analysis is underway

Also providing the first test of the remote data acquisition system (DAQ) and processing pipelines

The SABRE South Detector

Detectors

Improvement on similar detectors:

- Higher purity, low background crystals
- Southern hemisphere location
- Active background veto
- Particle ID, some position reconstruction Steel and Polyethylene capabilities
 Shielding

1 keV energy threshold for 1-6 keV ROI in NaI(Tl)

In-situ optical (in LS) and radioactive calibration possible

High quantum efficiency and low radioactivity R11065 Crystal PMTs + ultra pure Nal(Tl) crystals Steel V

> 18x R5912 Veto

PMTs

Itra pure Nal(Tl) crystalsSteel Vessel containing 12 kL LS, inner wallsLachlan Milligan - SABRE South, ICHEP2024covered in Lumirror reflector

ЩΥ,

Lachlan Milligan - SABRE South, ICHEP2024

Crystal radiogenic $5.2 \cdot 10^{-1}$ 13 Crystal cosmogenic $1.6 \cdot 10^{-1}$ 40

Veto efficiency

(%)

60

13

85

96

> 99

> 99

> 99

> 99

> 99

27

< 10% of background external to crystals by design

Component

Crystal PMTs

Liquid scintillator

PTFE wrap

Enclosures

Conduits

Steel vessel

Veto PMTs

Shielding

External

Total

Rate

(cpd/kg/keVee)

 $3.8 \cdot 10^{-2}$

 $4.5 \cdot 10^{-3}$

 $3.2 \cdot 10^{-3}$

 $1.9 \cdot 10^{-5}$

 $4.9 \cdot 10^{-8}$

 $1.4 \cdot 10^{-5}$

 $1.9 \cdot 10^{-5}$

 $3.9 \cdot 10^{-6}$

 $O(10^{-4})$

 $7.2 \cdot 10^{-1}$

Dominated by both radiogenic and cosmogenic Nal impurities, despite ⁴⁰K suppression

Veto efficiency:

percentage of

background vetoed

by LS veto detector

Total experimental background for SABRE South simulated, expecting overall background (after application of veto) of 0.72 cpd/kg/keVee

Background Simulations

Rate [cpd/kg/keV_{ee}] SABRE South Nal Radiogenic PMTs Simulation Nal Cosmogenic Enclosure PTFE Wrap Total 10 10^{-2} 10 12 10 20 Energy [keV_{ee}]

https://doi.org/10.1140/epjc/s10052-023-11817-z

EPJC, Vol 83, 878 (2023)

^{nat}K [ppb]

 4.7 ± 1.4

13

17.8

* Very low background Nal(Tl) crystals have been grown by the SABRE Collaboration [1] ²³²Th [ppt] <1 <10 0.6 * Not to be encapsulated for final detector

Nal-35*, SABRE South test crystal, grown to 3.7kg by RMD Boston undergoing tests since 2022

²³⁸U [ppt]

<1

<10

<20

- Preliminary light yield of 9.29 ± 0.03 ± 0.11 PE/keV at 59.5 keV
- Ongoing work to characterise background rates

SABRE South crystals to be provided by SICCAS and/or RMD

SABRE Nal-33 [1]

COSINE-100 [3]

DAMA [2]

[1] – SABRE, Eur. Phys. J. C 81, 299 (2021)

[2] - DAMA/LIBRA Nucl. Instrum. Methods Phys. Res. A: 592.3 (2008): 297-315

[3] - COSINE-100 Eur. Phys. J. C 78.2, 1-19 (2018)

https://doi.org/10.26188/14618172.v3

Active Veto System

Key requirements:

Reduce ⁴⁰K background by factor of 10

12 kL of linear alkyl benzene (LAB) procured via JUNO experiment production line, doped with PPO and bisMSB, light yield of ~0.17 photons/keV

Approx threshold of 50 keV (~10 PE) – expect low amounts of detectable photons at keV energies - ~ < 0.20 PE/keV detectable by single PMT ⁴⁰K Rate

Understanding of PMT response/noise imperative

PMT Pre-calibration

PMT response needs to be understood to optimise PE detection efficiency and noise rejection via thresholds defined by number of SPEs detected, i.e. **Pre-calibration** of all PMTs:

- 1. Single photoelectron response (SPE) and gain
- Dark rate, and temperature dependent dark rate

Other measurements: relative quantum efficiency, linearity of response - i.e. for reconstructing high energy crystal deposits

DR can vary on scale of ~500 Hz over few degrees - noise source that can very over time - needs to be controlled/accounted for

> Pre-calibration papers to be submitted to journal/arxiv July 2024

2.5

3.0

Lachlan Milligan - SABRE South, ICHEP2024

PMT Noise Rejection

Experimental studies with R11065 PMTs and commercial Nal(Tl) crystal to develop low energy noise rejection in crystal detectors

- Use of multivariate BDT classifiers should offer improvement of cuts on single variables (i.e. DAMAs X1 and X2)
- Aiming for improved noise rejection in low energy region, to bring SABRE South energy threshold to ~1 keV_{ee}

5 – 30 PE Region

1.0

Physics Program

1 keV threshold

0.5 keV threshold

SD WIMP (Migdal), 5 liveyears

XENONIT (Migdal)

Collar

SABRE South has been exploring different types of physics detector can exploit

Both crystal detectors and veto detector

Preliminary sensitivity studies performed on

Migdal effect

 10^{0}

Counts [ton⁻¹ MeV⁻¹] 10⁻³ 10⁻⁴

 10^{-5}

 10^{-1}

Energy [MeV]

- **Bosonic super-WIMPs**
- Sensitivity to supernova neutrinos yielding the possibility of SABRE South could join a Supernova Early Warning System (SNEWS)

cross-section [pb]

109

108

107

106

105

104

SABRE South

SABRE South TDR, DOI: https://doi.org/10.26188/14618172.v3

Distance [kpc]

103

Induced Modulation

Study potential of induced modulation from DAMA/LIBRA's background subtraction technique **using best faith reproduction of their backgrounds**

DAMA tritium activity likely over-estimated

- Revised activity found by using SABRE South simulated tritium activity and revised calculation of exposure
- Induced modulation is lower amplitude, out of phase Key takeaway: DAMA/LIBRA background is low enough that shape of background/subtraction method doesn't matter, there is no induced modulation

Status/Summary

SUPL is built and in use. Detector assembly to start in 2024, aiming for completion in 2025

- SABRE South Technical Design Report is public (<u>https://doi.org/10.26188/14618172.v3</u>)
- Pre-calibration of PMTs for veto system complete, publication to come in July 2024
- Crystal production commencing this year
- Veto vessel fit-out testing undertaken in 2023, 17 kL of LAB scintillator in Melbourne underground late in 2024
- Underground muon measurements with SABRE South muon veto have begun background muon flux characterisation underway, and testing of remote DAQ system
- Total projected background 0.72 cpd/kg/keV_{ee}
- **Rich physics program –** SABRE South potential inclusion in SNEWS
- Induced modulation studies to be public in July 2024 modulation not induced by background subtraction method

5σ discovery (3σ exclusion) power to a DAMA-like signal with 2 years data

Nal(Tl) experiments (ANAIS, COSINE, SABRE South and North) recently signed an agreement to collaborate and exchange knowledge to solve the mystery posed by DAMA/LIBRA

Lachlan Milligan - SABRE South, ICHEP2024

Acknowledgements

BACKUPS

Interaction Mechanism

ARC CENTRE OF EXCELLENCE FOR CATTER OF EXCELLENCE FOR THE UNIVERSITY OF MELBOURNE

Search for nuclear recoils of WIMP off of Na/I nuclei

Properties of dark matter imply low energy (keV) scatters

M. J. Zurowski, arXiv: 2211.15861

- Observable: scintillation light in crystal
- Reconstruction of recoil energy -> understanding of quenching factor

$$u_{ij} = \left[c_j + m_j \cos\left(\frac{2\pi}{T}(t_i - t_0)\right)\right] \mathcal{E}_i \Delta E_j \epsilon_j.$$

FIG. 3. Results of 1000 MC realisations of the maximum likelihood fit described in the text, performed over energy bins. For each energy bin, the mean and $\pm 1\sigma$ values of the fitted parameter \hat{m}_j are shown. The same two scenarios for the initial activity of ³H as in Fig. 2 are explored. We compare the results of these toy fits to the result of the same fit as reported by DAMA [1].

Muon Flux

First major muon flux/muon modulation measurement to occur in SUPL very soon

To measure flux and angular resolution, with ~4cm spatial resolution along two sided panels

Event Reconstruction

Lachlan Milligan - SABRE South, ALPS2023