
Pseudo-random number generators

Pros:

• Easily replicable results

• No external hardware necessary

Cons:

• Easily replicable results

• Not random enough for many use cases

PRNGs are typically based on hard-to-predict algorithms that are based on the seed – a number that
PRNGs use to derive their randomness from unpredictable or difficult to replicate factors, such as the
user’s mouse movement or the machine’s uptime.

Photon-based simple quantum solution to
random number generation

A photomultiplier tube (PMT) detects photons
from the LED that is powered by the pulse from
an external generator that also triggers the data
acquisition (DAQ). The main downside of this
setup is that it requires a black-box for the PMT
and the LED to be cased in and uses high voltage
of ~ 2000V. In Figure 1, the setup is using a
Hamamatsu [4] R7723 PMT and a blue LED.

Experimental ResultsTesting Methods

Monte Carlo Pi Estimation Test

High/Low
(bad data)

Even/Odd

Horizontal lines:
PRE‐NEUMANN: 2042.25
POST‐NEUMANN: 11981.25

Vertical lines:
PRE‐NEUMANN: 11359.75
POST‐NEUMANN: 10495.25

Estimated line count for 290,000 bits: 11328

The Monte Carlo Pi Estimation Test (MCPET) is done by randomly selecting points within a
square and counting each time a point falls within the quarter-cross-section of a circle, and then dividing
that total by the total number of points everywhere, pi can be estimated. This test relies on having enough
coordinates produced from data to accurately estimate pi. For analysis, pi is calculated from the data and by
using Python’s Random library with the same number of coordinates as the data. Comparing both helps
determine whether a poor pi value is due to limited amount of data or poor-quality data.

Fractional Line Symmetry Test
The Fractional Line Symmetry Test, or FLST [5], is a test developed specifically for this project

that compares how frequently bits appear when stacked and visualized. This test is sensitive to poor quality
of the data sample that otherwise passes simple tests like the standard deviation and average.

Initial Processing of Amplitudes

if amp[i] > amp[i‐1]: bitstream += 1
if amp[i] < amp[i‐1]: bitstream += 0
else: skip

if amp[i] % 2 == 0: bitstream +=1
else: bitstream += 0

Iterated Von Neumann Extractor
IVNE procedure was initially designed to equalize probabilities for the ‘unfair’ coin. For the coin:

• If 𝑃 ℎ𝑒𝑎𝑑𝑠 𝑥 then 𝑃 𝑡𝑎𝑖𝑙𝑠 1 𝑥
• In general: x 1 𝑥
• Look at pairs: heads + tails (ht) and tails + heads (th).
• Probability for a pair is a product of individual ones.
• 𝑃 ℎ𝑡 𝑥 1 x and 𝑃 𝑡ℎ 1 𝑥 𝑥
• 𝑃 ℎ𝑡 𝑃 𝑡ℎ , QED

The same process can be applied to balance the bitstream by folding it in two and counting 10 and
01 pairs and discarding 11 and 00 pairs. The 10 is replaced by 1, 01 by 0 and a new bitstream is
formed. Process is iterated over the discarded data. This ‘extracts’ all the randomness from the
data set.

Introduction

Photomultiplier Tube Multi-Pixel Photon Counter

A Multi-Pixel Photon Counter (MPPC) from
Hamamatsu [4] is connected to an Arduino and detects
photons in sync with an LED pulse from an internal trigger.
The LED is powered by the Arduino’s default Pulse Width
Modulation (PWM). The sensor is in a dark enclosure tube.

This prototype has shown enormous potential
despite the current setup generating only about 4000 random
amplitudes per second due to the slow Arduino board.

Figure 3. Left: Horizontal lines found Center: Vertical lines found Right: Diagonal lines found.

Figure 1. The PMT HRNG setup

Figure 2. The MPPC HRNG setup

Figure 5. High/Low amplitude processing pseudo-code

Figure 4. Even/Odd amplitude processing pseudo-code

HRNG, or the Hardware random number generators, nowadays are widely used both
in the computer world for the security purposes and by many sciences for the models and
simulations as a source of the high-quality randomness . HRNGs that exist currently are
either expensive or slow with questionable random data quality in the long-term stability
tests. This study applies the capabilities of an already established HRNG design [1, 2] and
introduces new tests for the randomness of a data set of the HRNG based on the low-
number photon absorption by a detector (a photo-multiplier tube of a silicon-based
photodetector) [3] that can provide a large volume of high-quality random numbers. The
results of testing of quality of the generator output are presented.

Figure 8. High/low pre-Neumann
PMT data horizontal lines

Figure 7. Even/odd pre-Neumann
PMT data horizontal lines

Horizontal lines:
PRE‐NEUMANN: 11337.5
POST‐NEUMANN: 10990.0

Vertical lines:
PRE‐NEUMANN: 11291.75
POST‐NEUMANN: 11006.25

• The photon-based solutions explored in this research have shown great potential for being high-speed
sources of high-quality random number generation.

• It was found as shown in Experimental Results that the current best way to process data into the bitstream is
the Even/Edd method. The PMT appears to outperform the MPPC in the MCPE Test, but the MPPC setup is
still in its prototype stage and needs tuning.

• By use of the FLST, it was detected that the high/low method of processing is far worse than the even/odd
method as expected. The FLST successfully revealed this together with MCPET, even though the high/low
algorithm otherwise passed the AMSDET well.

• Current objectives for the future of this project are to sync the MPPC + Arduino with an LED that is voltage
controlled through means besides PWM. A proper enclosure for the board and sensor is also necessary, as
well as a faster board to increase the number of amplitudes per second.

• Additionally, plans include completing the data collection of the large samples and testing them with the
methods described in this work. The results will be compared with other known tests such as “Die hard”,
TestU01 and similar.

Acknowledgement: This work is supported by NSF LEAPS-MPS Award 2316097

Conclusion

References

The FLST Results
Detect length of n=4.

[1] D. Beznosko et al., "Random Number Hardware Generator Using Geiger-Mode Avalanche Photo Detector", e -Print: 1501.05521, DOI:
10.22323/1.252.0049, PoS PhotoDet2015 (2016), 049
[2] A. Iakovlev et. al, “Random Number Hardware Generator Using Geiger-Mode Avalanche Photo Detector”, arXiv preprint
arXiv:1501.05521, 2015/1/22 https://doi.org/10.48550/arXiv.1501.05521
[3] Dmitriy Beznosko, Keith Driscoll, Fernando Guadarrama, Steven Mai, Nikolas Thornton. “Data Analysis Methods Preliminaries for a
Photon-based Hardware Random Number Generator”, arXiv:2404.09395 [cs.CR] 15 Apr 2024
[4] Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587, Japan
[5] Dmitriy Beznosko, Keith Driscoll, Fernando Guadarrama, Steven Mai, Nikolas Thornton, “Preliminaries of a Photon-based Hardware
Random Number Generator Design and Data Analysis Methods”, 3rd Annual College of STEM Symposium, PROC(03ACSS2024)001
https://sos.clayton.edu/proceedings/003/PROC(03ACSS2024)001.pdf
[6] SHANNON, C.E. “A Mathematical Theory of Communication.” Harvard Mathematics Department, Accessed 16 April 2024.
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf.

Quality testing of data from photon-based hardware random number generator
Dmitriy Beznosko*, Keith Driscoll, Fernando Guadarrama, Alexander Iakovlev, Steven Mai, Nikolas Thornton

ICHEP 2024 *presenter, dmitriybeznosko@clayton.edu

The methods used for testing the data quality are described. The collected data is tested for the
quality of the randomness of the bits obtained. Simplest test includes finding the Arithmetic Mean,
Standard Deviation and Entropy of the dataset – the AMSDET. Note – entropy test is described separately.

Figure 6. Coin example: Heads and Tails

Before the data can be further processed, it needs to be
turned into a bitstream, so a set procedure should exist to turn the
amplitudes from the photosensor into the 1s and 0s. Figure 4
shows the pseudo-code used for this purpose – if the amplitude is
even, it is assigned a bit value of 1, and 0 for the odd ones.
Additionally, a known ‘poor’ data-set is created by using the
procedure in Figure 5, where if the next amplitude is higher than
previous, 1 is assigned, and 0 for lower. This process creates
subtle asymmetry, and we used this dataset for the validation of
the data quality testing methods used.

It is very clear that these simple methods find the deficiency of high/low conversion method, specifically the MCPE. IVNE fails to
improve the dataset and even makes is a bit worse in some cases.

The MPPC setup requires fine-tuning like finding the right biasing voltage and amount of light that illuminates
the sensor, and this data was obtained prior to such work that is currently in progress.

The FLST Visual Example

The FLST should show the symmetric results between the vertical and horizontal lines. By using different detect
length, detection of patterns that indicate lower data quality is possible. This is specifically clear when
comparing the number of lines for the data obtained high/low method before IVNE procedure is applied. This is
expected, and the intended low-quality of High/Low data is clearly caught by FLST even when compared to
MCPET.

Horizontal/Vertical FLST Diagonal FLST
HV-FLST compares how frequently bits appear
back-to-back horizontally and vertically when
stacked and visualized into a 2D image. The folding
done to stack and visualize the data is inherently
random to the data length itself. Once the linear data
is turned into a 2D image, the number of “lines”
(back-to-back bits of some length) found horizontally
as in Figure 3 (left), and vertically as in Figure 3
(middle), should be the same in the ideal sample. The
prediction is the same for the horizontal and vertical,
so comparison with the predicted value also gives
cross-comparison between vertical and horizontal.

The D-FLST is an implementation of the HV-
FLST, except the bits data is first turned into a
square matrix and traversed diagonally. The
bitstream is then traversed starting in the top
left corner, moving up and to the right one cell,
wrapping back to the bottom left once the edge
of matrix is reached. This traversal path is
shown in Figure 3 (right), where the numbering
attached to the start of the green arrows
describes the order that the individual diagonals
are traversed. For all FLST variations, results
are compared with the theoretical predictions as
given by Equation 1. n is line length.

Entropy Test
The Entropy Test (part of AMSDET) evaluates the overall balance of a given data set, i.e., it provides an initial overview of
the ratio of 1’s to 0’s. The higher the entropy value the more balance the set has. The entropy test was implemented by taking
a bitstream and calculating its entropy value by using Shannon’s entropy formula [6], as shown in Equation 2.

𝑃 0 ⋅ 𝑙𝑜𝑔 𝑃 0 𝑃 1 ⋅ 𝑙𝑜𝑔 𝑃 1 (2)
where 𝑃 0 is the probability of 0’s appearing in the data and 𝑃 1 is the probability of 1’s appearing. The value of 𝑃 0
was determined by taking the total number of 0’s in the bitstream and dividing it by the length of the bitstream. The same
process was used to find the value of 𝑃 1 . The result yields an entropy value for the dataset, which determines the balance
of 1’s and 0’s in a data set, where repetitive data has an entropy value close to 0 and more balanced data has an entropy value
close to 1. It is important to note that the balance of 1’s and 0’s is an attribute important to random data but does not
necessarily determine whether the data is random.

Simple methods of AMSDET can’t identify the known deficiency of high/low processing. Similar results
were obtained for the MPPC datasets and are not shown here.

𝐿𝑖𝑛𝑒𝑠#
𝑛 1
2 𝑛 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ 1

Post-IVNE Size,
bitsRaw Size, bitsProcessing

MethodDataset

282888290000Even/OddSmall PMT
Bitstream 269145289050High/Low

282845290000Even/OddSmall MPPC
Bitstream 245024266251High/Low

40340554080134Even/OddLarge MPPC
Bitstream 34887173752644High/Low

Table 1. Datasets that were used.

EntropyStandard
deviationAverageIVNEDataset,

Even/Odd
0.99999990720.49999971060.4994620690✗Small PMT

Bitstream 0.99999991110.49999972260.4994732898

Table 2. AMSDET results for the PMT data using Even/Odd processing.

EntropyStandard
deviationAverageIVNEDataset,

High/Low
0.99999999810.49999999420.4999238886✗Small PMT

Bitstream 0.99999947780.49999837110.4987237363

Table 3. AMSDET results, PMT data, using High/Low processing (bad data)

Python’s Random() PiEstimated PiIVNEDataset, Even/Odd
3.158073.13644✗Small PMT

Bitstream 3.139823.14502

Python’s Random() PiEstimated PiIVNEDataset, High/Low
3.162583.45441✗Small PMT

Bitstream 3.163903.09256

Python’s Random() PiEstimated PiIVNEDataset, Even/Odd
3.136883.14196✗Small MPPC

Bitstream 3.134693.13311
3.142113.16522✗Large MPPC

Bitstream 3.140203.13517

Python’s Random() PiEstimated PiIVNEDataset, High/Low
3.122363.48942✗Small MPPC

Bitstream 3.138303.07327
3.142683.48701✗Large MPPC

Bitstream 3.141223.08231

Table 10. AMSDE Test results for the PMT setup using Even/Odd processing.
Table 11. AMSDE Test results for the PMT setup using High/Low processing.
Table 12. AMSDE Test results for the MPPC setup using Even/Odd processing.
Table 13. AMSDE Test results for the MPPC setup using High/Low processing.

Monte Carlo Pi Estimation Test
Table 5. MCPET results, PMT data, using High/Low processing (bad data)Table 4. MCPET results for the PMT data using Even/Odd processing.

Table 6. MCPET results for the MPPC data using Even/Odd processing. Table 7. MCPET results, PMT data, using High/Low processing (bad data)

MCPET is quite sensitive and can clearly identify the known deficiency of high/low processing. Even
application of INVE procedure doesn’t fix the bad dataset deficiencies that affect MCPET.

Diagonal %
Discrepancy

Vertical %
Discrepancy

Horizontal %
DiscrepancyIVNEDataset,

Even/Odd
0.1556%0.3211%0.08276%✗Small PMT

Bitstream 0.9270%0.3987%0.5458%

Table 8. FLST results for the PMT data using Even/Odd processing. Table 9. FLST results, PMT data, using High/Low processing (bad data)

Diagonal %
Discrepancy

Vertical %
Discrepancy

Horizontal %
DiscrepancyIVNEDataset,

High/Low
0.1593%0.6088%81.91%✗Small PMT

Bitstream 0.2827%0.1734%13.96%

Diagonal %
Discrepancy

Vertical %
Discrepancy

Horizontal %
DiscrepancyIVNEDataset,

Even/Odd
2.616%3.642%2.215%✗Small MPPC

Bitstream 0.4108%0.7140%1.076%
3.527%3.671%3.535%✗Large MPPC

Bitstream 0.4147%0.1133%0.4271%

Table 10. FLST results for the MPPC data using Even/Odd processing.

Diagonal %
Discrepancy

Vertical %
Discrepancy

Horizontal %
DiscrepancyIVNEDataset,

High/Low
0.6833%0.8300%87.85%✗Small MPPC

Bitstream 1.951%1.481%13.84%
0.4382%0.2699%88.26%✗Large MPPC

Bitstream 0.1871%0.1178%14.56%

Table 11. FLST results, MPPC data, using High/Low processing (bad data)

