

Institute of High Energy Physics, Chinese Academy of Sciences

Design of the first full-scale HYLITE, a charge integration pixel detector readout chip for XFEL

Mujin Li¹, Wei Wei¹, Jie Zhang¹, Xiaoshan Jiang¹, Xudong Ju², Zhengheng Li², Xining Jia², Peng Liu², Tao Sun³, Zhen Sheng³, Huaxiang Yin⁴, Gaobo Xu⁴, Peng Sun⁴, Zhi Liu² 1 Institute of High Energy Physics, Chinese Academy of Science. 2 ShanghaiTech University. 3 Shanghai Institute of Microsystem and Information Technology, CAS. 4 Institute of Microelectronics, CAS.

Introduction of SHINE, STARLIGHT and HYLITE

Figure 1 Location of SHINE (Top View)

• SHINE (Shanghai High repetitioN rate XFEL and **Extreme light facility) is the first hard X-ray Free Electron Laser facility in China.**

Specs	Parameters
Sensor	500 μm silicon PIN
Pixel Size	100μm × 100μm
Array Size	128 × 128
Dynamic range	1 ~ 10000 ph./pulse/pixel @12 keV
Frame rate	12 kHz (continuous readout)
Detector	A 4M pixel detector in vaccum, quadrant movable

• HYLITE (High dYnamic range free electron Laser Imaging deTEctor) is the charge-integration pixel readout chip of STARLIGHT.

- Photon Energy: 0.4~25 keV
- Repetition Frequency: 10 kHz (Up to 1 MHz)
- STARLIGHT (SemiconducTor Array detectoR with Large dynamic ranGe and cHarge inTegrating readout) is a new pixel array detector designed for SHINE.

 Tapeout: 	• Tapeout:	2022.3	2022.6
2020.10	2021.1	• Pixel size:	• Pixel size:
 Pixel size: 	• Pixel size:	200µm×200µ	200µm×200µ
200µm×200	100µm×100	m	m
μm	μm	Array Size:	• Array Size:
• Arrav Size:	• Array Size:	16×25	64×64
6×12	, 16×24	 Full Function 	First Full-
0		Verification	Scale Chip

Figure 2 The STARLIGHT Detector System

~ L :	
_nip	Design

Figure 4 Block Diagram of the HYLITE Pixel Structure

- Three Working Phases
 - Analog Phase: Charge integration
 - Conversion Phase: A-D Conversion by in-pixel single-slope ADC
 - Readout Phase: Pixels organized as 32 shift chains; single LVDS output port

• Average yield of 5 wafers: 84.8%

Figure 10 The wafer probe card and test environment of HYLITE200F

Prototype Modules

Wafer Test

Figure 3 Block Diagram of the HYLITE200S Chip

- HYLITE200F: The first full-scale chip of HYLITE.
 - Array Size: 64×64
 - Pixel Size: 200 μ m \times 200 μ m
 - ENC in the High Gain Mode: ~360 e-
- Working in Pump-Probe mode, synced with the beamline.
- Three Gains
 - Automatic Gain Switching
 - Dynamic range of 10⁴ ph. @12 keV with single-photon resolution

- Maximum Frame Rate @ 400 MHz external clock: 6.3 kHz
- Power down feature involved
 - Total average power: 34 μW/pixel > Analog: 21.96 μ W (@ 1 μ s analog power-up time) ➢ Digital: 14.76 µW

Figure 6 Chip Layout of HYLITE200F Figure 5 Pixel Layout of HYLITE200F

Figure 11 Modules of 2×8 & 2×2 Chips

Figure 13 Imaging test with a "SHINE STRALIGHT" mask, module of 2×2 Chips

Figure 12 Test environment of prototype modules

- Sensor: 500 μm silicon PIN
- Bump-bonding
 - Copper Pillar technology
 - Minimum pad clearance: 60 μm
- Three types of prototypes are manufactured
 - Single Chip (Fully tested, referring Poster #15)
 - 2×2 Chips (Preliminarily tested)
 - 2×8 Chips (Under tested)
- Functionality of the detector is

HYLITE is a charge-integration readout chip designed for STARLIGHT, a pixel array detector for SHINE. In this poster, we present the designs of the first full-scale chip of HYLITE, HYLITE200F, and the corresponding prototype modules. Functionality of the front-end module is verified via preliminary imaging test, while the bump-bonding process still needs to be improved. Meanwhile, the second full-scale chip with a pixel pitch of 100 μ m has been manufactured and will be tested soon.

ICHEP2024 2024.7.18 ~ 7.25 Prague.