

संत लौंगोवाल अभियांत्रिकी एवं प्रौद्योगिकी संस्थान (भारत सरकार द्वारा स्थापित)

Sant Longowal Institute of Engineering & Technology DEEMED UNIVERSITY (Established by Govt. of India)

Study of zirconolite ceramic compositions through swift heavy ion irradiations from 15 UD tandem pelletron for immobilizing nuclear wastes

SS Ghumman

Department of Physics, Sant Longowal Institute of Engineering & Technology,

Longowal-148106 Punjab, India

ssghumman@gmail.com

Outline

□Introduction

Nuclear Fuel & WasteIndian Scenario

U Waste Management

Waste Forms

Zirconolite

Radiation Effects in Materials

Radiation Stability of Zirconolite

Summary

□ Acknowledgements

Nuclear Waste: A Dread

* T. Kaiba, Fig. 2, Advantages and dis-advantages of nuclear fuel reprocessing (2015)

Nuclear Waste: A Dread

* T. Kaiba, Fig. 2, Advantages and dis-advantages of nuclear fuel reprocessing (2015)

How can environment be saved from hazardous effects of radioactive wastes?

IUAC

Potential Waste Forms

Glasses ► Borosilicate glasses-- (Na-,Ln-, Pb-, Ca-) >Alkali-Tin-Silicate glasses **Glass ceramics** > Phosphate glasses- (Fe-, Al-) Ceramics >Oxides-**♦** Zirconia (ZrO₂) **♦** Perovskite (CaTiO₃) **♦** Pyrochlore (A₂B₂O₇) ✤Zirconolite (CaZrTi₂O₇) ♦ Hollandite (BaTi₈O₁₆) ♦ Spinel (MgAl₂O₄) > Silicates-***** Zircon (ZrSiO₄) **≻**Phosphates-✤ Monazite (LnPO₄)

Preferable Ceramic Materials

S. No.	Materials	Aqueous	Chemical	Waste Loading	Radiation	Volume Swelling
		Durability	Flexibility		Tolerance	
1.	Pyrochlore	High	High	High	Low-High	Medium
	Gd ₂ (Ti,Hf) ₂ O ₇					
2.	Zirconolite	High	High	Medium	Low-Medium	Medium
	CaZrTi ₂ O ₇					
3.	Zirconia	High	Medium	Medium	High	Low
	(Zr,Ln,Ac)O _{2-x}					
4.	Zircon	High	Medium	Low	Low	High
	ZrSiO ₄					
5.	Monozite	High	Medium	High	High	Low
	LnPO ₄					
6.	Zirconates	High	Medium	Medium	High	Low
	Gd ₂ (Zr,Hf) ₂ O ₇					
7.	Perovskite	Low	Medium	Low	Medium	High
	(Ca.Sr)TiO					

Zirconolite

□Zirconolite is one of the titanate based ceramic phase for the immobilization of actinides and lanthanides.

□Ideal chemical formula is CaZrTi₂O₇.

Ti Layer

\Box It has a monoclinic layered type structure with space group $C_{2/c}$.

Zirconolite

Radiation Effects

Radiation Simulation

SRIM Calculations

Ion	Ion energy	S _e (keV/nm)	S _n (keV/nm)	S _e /S _n
Ba ⁺	70 MeV	13.47	0.202	66.7
Au^+	120 MeV	21.67	0.325	66.7

Swift Heavy Ion Induced Effects

Synthesis

Solid State Reaction

$CaCO_3 + Nd_2O_3 + ZrO_2 + 2 TiO_2 + Al_2O_3 \rightarrow$

 $Ca_{0.8}Nd_{0.2}ZrTi_{1.8}Al_{0.2}O_7 + CO_2$

Homogenization and pelletization
Sintering: 1200 °C/4 hrs and 1400 °C/16 hrs
Heating rate: 3 °C/min
Cooling rate: 2 °C/min

Irradiation with 120 MeV Au⁺ Ions

**In-situ* XRD facility in LINAC beamline using 16 UD Pelletron Accelerator at IUAC Delhi

Irradiation Induced XRD Effects

29.5 30.0 30.5 31.0 31.5

20

*Kulriya et. al., Rev. Sci. Instrument 78 (2007) 113901

Irradiation Induced XRD Effects

Irradiation Induced Raman Effects

Summary

- Irradiation with 120 MeV Au⁺ ions in fluence range of 1×10¹¹⁻¹⁴ ions/cm² at room temperature
- XRD and Raman investigations:
 - Loss of crystallinity
 - Amorphization in the form of ion tracks
 - Bonds distortion to TiO₅
- Stability and durability of zirconolite in high (electronic) energy regime too

Acknowledgements

□IUAC Pelletron Group, IUAC facilities, New Delhi

Thank You!!!

