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Radiotherapy; the challenge

Cancer: second most common cause of death globally
— Radiotherapy indicated in half of all cancer patients

Significant growth in global demand anticipated:
— 14.1 million new cases in 2012 - 24.6 million by 2030
— 8.2 million cancer deaths in 2012 > 13.0 million by 2030

Scale-up in provision essential:
— Projections above based on reported cases (i.e. high-income countries)
— Opportunity: save 26.9 million lives in low/middle income countries by 2035

Atun, Lancet Oncol. 2015 Sep;16(10):1153-86

Provision on this scale requires:
— Development of new and novel techniques ... integrated in a
— Cost-effective system to allow a distributed network of RT facilities



Our ambition is to:
* Deliver a systematic and definitive radiation biology programme
* Prove the feasibility of laser-driven hybrid acceleration
* Lay the technological foundations for the transformation of PBT

— automated, patient-specific proton and ion beam therapy




The case for fundamental radiobiology

Relative biological effectiveness: Paganetti, }

van Luijk

— Defined relative to reference X-ray beam (2013)
SemRadOncol

— Known to depend on: )
* Energy, ion species . I
* Dose & dose rate f}?j"ﬁ-
* Tissue type

* Biological endpoint
Yet:
— p-treatment planning uses 1.1
— Effective values are used for C°*

Maximise the efficacy of PBT now & in the
future:

— Develop systematic programme of
radiobiological measurements o 10 20

LET (keV/um)




What is LhARA?

— Strong focusing (short focal length) without the use of high-field solenoid

 Fast, flexible, fixed-field post acceleration
— Variable energy
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A novel, hybrid, approach: Loweneray e o 5
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* Laser-driven, high-flux proton/ion source P =% o T
— Overcome instantaneous dose-rate limitation d>\ S| W \\ g

° Capture at >10 Mev accelerator (FFA) ring o 3;
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— Delivers protons or ions in very short pulses ey Z

* Bunches as short as 10—40 ns e e

— Triggerable; arbitrary pulse structure " S
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* Novel “electron-plasma-lens” capture & focusing &

LhARA performance summary 2006
* Protons: 15—127 MeV = : 12 Me\i grotons 15 Nie)Vr PGrotons 127 l\ilre\(j grotons 334 Me)\{/t(t}Carbon
7300y
* lons: 5—34 MeV/u

1.0 x 10°Gy/s | 1.8 x10°Gy/s | 3.8 x 10°Gy/s 9.7 x 10° Gy/s
71 Gyls 128 Gy/s 156 Gy/s 730 Gy/s
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Dascalu, Dover, Gray Source: SimUIation

R&D objectives:
* “Full-scale” tests in conditions approaching LhARA specification
 LhARA-focused diagnostic and targetry development

* High-repetition rate, automation and longevity studies

e Accurate numerical modelling 3D simulation codes

Vary angle of incidence of laser Vary f-number of focusing optic

r (pm)
Time = 0.74 ps

Realistic, 2-stage simulation on ARCHER2
using accurate “pre-plasma” profile
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Study proton production as a function of
angle of incidence, spot size, proton-layer

thickness
1.5

Seek to benchmark against data

I (10%' W/em?)



SCAPA Experiment Team....
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12.7pm Kapton Energy Scan

10pm Steel Energy Scan

12.7um Kapton fit: y = 3.61x~0.54
10pm Steel fit: y = 5.20x"0.63
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Source: diagnostics & high rep-rate
Diagnostics High-rep rate / longevity ...

N o o Experimental R&D at ICL - Initial results
solute calibration and dose linearity scan

Le10 Energy dependent emission scan
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* Preliminary experiments run at 5 mJ level (without final amplifier)
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2 En + Continuous operation at 100 Hz for 10s minutes

Beam Dose (Gy)

+ Plasma formation, x-ray generation (and debris production!) observed

O. Ettlinger, N. Xu, Z. Najmudin 90 mJ of laser energy, 30 fs pulse width at 100 Hz
n “ II Predicted maximum proton energies ~ few MeV
DedlcatEd Callbratlon effort Ied by i ‘ - Semi-continuous access allows long term R&D into
J technical issues in stabilisation, debris, targetry, etc
N. Dover (ICL): T
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Maxouti, Bamber, Cox, Hobson

LION beamline - BDSIM
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Real-time dose measurment
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Real-time dose measuremen
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Pasternak, Shields, Kuo, Kurup, Hill
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Conclusions

 Significant progress in ITRF/LhARA:

Beamline design and optimisation

Engineering, initial studies of FFA magnet

Initial characterisation of laser-driven source

Progress on understanding and stablisation of plasma for Gabor lens
Design of ion-acoustic proof-of-principle experiment

Peer-group consultation leading to specification of end-station

* Looking forward:

Recognition of importance of development of biological programme:

* First steps in design and specification of proof-of-principle experiment as part of
broader radiation-biology programme

Project programme for next two years defined

* Exciting programme, but, clear need to make the case!
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Learning from history

NE————. Radiology 47:487-91 (1946) W
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Wilson, then at Harvard designing
150 MeV cyclotron:
* ldentified benefits and properties of
proton beams for RT

* Pointed out potential of ions (carbon)
and electrons

100 TeV

oIy _A LEP/SLC

1 TeV PETRA (e*")
FNAL/SPS

-l
100GeV [ proton synchrotron SLED

weak focusing ~__
— rnell
electron AG Cornz .

] ____electron linacs
synchrotron synchrocyclotrons
1 GeV [weak focusing i

e @BioTech:
— Develop the system!
@ energy frontier:

— Innovate through applications: ;
e Can take greater technical risk
* Reduced timescales, more & more novel generator
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