

Development of a laser-hybrid approach to the delivery of ion beams for biomedical application

Laser-hybrid Accelerator for Radiobiological Applications to serve the Ion Therapy Research Facility

K. Long, 18 July, 2024 On behalf of the ITRF/LhARA collaboration

Radiotherapy; the challenge

- **Cancer: second most common cause of death globally**
 - Radiotherapy indicated in half of all cancer patients
- Significant growth in global demand anticipated:
- Scale-up in provision essential:
- Radiotherapy indicated in half of all cancer patients
 Significant growth in global demand anticipated:

 14.1 million new cases in 2012 ---> 24.6 million by 2030
 8.2 million cancer deaths in 2012 ---> 13.0 million by 2030

 Scale-up in provision essential:

 Projections above based on reported cases (i.e. high-income countries)
 Opportunity: save 26.9 million lives in low/middle income countries by 2035

 Provision on this scale requires:
- **Provision on this scale requires:**
 - Development of new and novel techniques ... integrated in a
 - Cost-effective system to allow a distributed network of RT facilities

Our ambition is to:

- Deliver a systematic and definitive radiation biology programme
- Prove the feasibility of laser-driven hybrid acceleration
- Lay the technological foundations for the transformation of PBT
 - automated, patient-specific proton and ion beam therapy

The case for fundamental radiobiology

- Relative biological effectiveness:
 - Defined relative to reference X-ray beam
 - Known to depend on:
 - Energy, ion species
 - Dose & dose rate
 - Tissue type
 - Biological endpoint
- Yet:
 - *p*-treatment planning uses 1.1
 - Effective values are used for C⁶⁺
- Maximise the efficacy of PBT now & in the future:
 - Develop systematic programme of radiobiological measurements

What is LhARA?

<u>A novel, hybrid, approach:</u>

- Laser-driven, high-flux proton/ion source
 - Overcome instantaneous dose-rate limitation
 - Capture at >10 MeV
 - Delivers protons or ions in very short pulses
 - Bunches as short as 10—40 ns
 - Triggerable; arbitrary pulse structure
- Novel "electron-plasma-lens" capture & focusing
 - Strong focusing (short focal length) without the use of high-field solenoid
- Fast, flexible, fixed-field post acceleration

5-34 MeV/u

- Variable energy
 - Protons: 15—127 MeV
 - lons:

	arXiv:2006.0049			
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon
Dose per pulse	7.1 Gy	12.8 Gy	$15.6\mathrm{Gy}$	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9$ Gy/s	$1.8 imes10^9{ m Gy/s}$	$3.8 imes10^8{ m Gy/s}$	$9.7 imes10^8{ m Gy/s}$
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

C. Hill et al; ASTeC/TD DL

Dascalu, Dover, Gray

Source: simulation

R&D objectives:

- "Full-scale" tests in conditions approaching LhARA specification
- LhARA-focused diagnostic and targetry development
- High-repetition rate, automation and longevity studies
- Accurate numerical modelling 3D simulation codes

Realistic, 2-stage simulation on ARCHER2 using accurate "pre-plasma" profile

Study proton production as a function of angle of incidence, spot size, proton-layer thickness

Seek to benchmark against data

Plasma Mirror Chamber

Main Interaction Chamber (Oct

Laser-solid interaction beamline B1 in Bunker B.

Source: experiment

Source: diagnostics & high rep-rate

Diagnostics

High-rep rate / longevity ...

Absolute calibration and dose linearity scan

Energy dependent emission scan

Experimental R&D at ICL - Initial results b)

- Preliminary experiments run at 5 mJ level (without final amplifier)
- Continuous operation at 100 Hz for 10s minutes
- · Plasma formation, x-ray generation (and debris production!) observed

O. Ettlinger, N. Xu, Z. Najmudin

90 mJ of laser energy, 30 fs pulse width at 100 Hz Predicted maximum proton energies ~ few MeV Semi-continuous access allows long term R&D into technical issues in stabilisation, debris, targetry, etc

Scintillators: key for high rep rate operation

- **Dedicated calibration effort led by** N. Dover (ICL):
 - **Birmingham MC40 cyclotron**

Ruksasakchai, Isaac, Eriksson, Bertsche

Capture

 "Electron-plasma" (Gabor) lens:
 Strong focusing exploiting electron gas in "Penning/Malmberg" trap

- Key issues:
 - Electron density, plasma stability
- Measurements on Penning-Malmberg trap at Swansea University
 - "Rotating wall" to "spin-up" plasma to gain stability

Capture

- Numerical analysis to interpret and optimise experiments

Maxouti, Bamber, Cox, Hobson

Real-time dose measurment

Real-time dose measurement

Maxouti, Bamber, Cox, Hobson

Pasternak, Shields, Kuo, Kurup, Hill

Stage 2: FFA & FFA magnet

FFA magnet

Emerging collaboration with ISIS u/g team

Conclusions

- Significant progress in ITRF/LhARA:
 - Beamline design and optimisation
 - Engineering, initial studies of FFA magnet
 - Initial characterisation of laser-driven source
 - Progress on understanding and stablisation of plasma for Gabor lens
 - Design of ion-acoustic proof-of-principle experiment
 - Peer-group consultation leading to specification of end-station
- Looking forward:
 - Recognition of importance of development of biological programme:
 - First steps in design and specification of proof-of-principle experiment as part of broader radiation-biology programme
 - Project programme for next two years defined
- Exciting programme, but, clear need to <u>make the case!</u>

BACKUP

Learning from history

n tissue is Radiology 47	:487–91 (1946) _{y, 1.e., 15}			
proton is 27 cm. It is	and 85 per cent water.			
rotons can penetrate to	and densities. ² The accu			
ceeds through the tissue	per cent. However, exa			
aight line, and the tissue	ious tissues can be quie			
Wilson, then at Harvard designing 150 MeV cyclotron:				

Identified benefits and properties of proton beams for RT

- Pointed out potential of ions (carbon) and electrons
- **@BioTech:**
 - Develop the system!
- @ energy frontier: \bullet
 - Innovate through applications:
 - Can take greater technical risk •
 - Reduced timescales, more & more novel • machines
 - **Recruitment & retention, education, and** training

