

Search for the production of vector-like lepton pairs in final states containing tau-leptons with the ATLAS detector

Gabriel Oliveira Corrêa, on behalf of the ATLAS Collaboration

gabriel.oliveira.correa@cern.ch - IFAE, Barcelona

ICHEP 2024

ATLAS-CONF-2024-008

Institut de Física d'Altes Energies

The 4321 model

The 4321 model [1] is a UV-complete model that extends the SM with a new symmetry group: $SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$

It introduces:

- Color octet (g'), Vector LQ (U_{μ}), Color singlet (Z').
- VLQ doublets: U/D, C/S, T/B.
- VLL doublets: N_1/E_1 , N_2/E_2 , N_3/E_3 .
- Accommodates *B*-meson anomalies.
- VLLs have a mass around 1 TeV.
- VLLs decays via off-shell vector LQ U_1 into third generation quarks and leptons.

Search strategy

 $\frac{5\Gamma}{e\mu OS1\tau_{had}}$

(1/2b)MLT

Events

- Orthogonal signal regions analyzing different τ multiplicities with \geq 3 *b*-jets and no light-leptons.
- Improved use of ATLAS triggered data by categorizing events in orthogonal "trigger buckets".
- \blacksquare E_T^{miss} , single-tau, di-tau, and b-jet triggers composing the MET, STT, DTT, and BJET buckets, respectively.
- Mass-parameterized neural network score as discriminating variable in the

The electroweak production of VLL pairs offers a phenomenology with multiple taus, b-jets, jets, leptons, and E_T^{miss} .

 $EN \rightarrow b(b\tau)t(t\nu)$ $EN \rightarrow b(b\tau)t(b\tau)$

 \blacksquare 2.8 σ excess seen by the CMS experiment [2].

- joint likelihood fit to data.
- **3** neural network trainings: 1τ MST, 1 au BT, $\geq 2 au$ MSDT.
- **Signal regions:** $1\tau / \geq 2\tau, \geq 3b, 0\ell$
- **Control regions:** 1τ , 2b; $2\tau OS \times (0b, 1b, 2b)$
- **Background corrections:** $\geq 1\ell$ channels used for V+jets, $t\overline{t}$, and fake τ_{had} corrections. 1τ , 1b and 2τ SS for multijet background estimations.

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

120 - VLL 4321

100

60

 $\geq 2\tau_{had} \geq 3b$

Post-Fit

tt+light

Fake τ_{had}

-- VLL(1 TeV)*

··VLL(0.6 T,e.V)*_

tt+≥1b

tī+≥1c

Multijet

Others

Uncertainty

Z+jets

Background estimation

- N_{iets} -dependent correction for Z+jets events.
- Reweighting to theory, heavy-flavour scaling, and N_{jets} -dependent correction for $t\bar{t}$ events.
- **Fake** τ_{had} background corrected using a semi-data-driven approach.
- Multijet background estimated with the matrix method in the 1τ regions.
- **\square** 2τ OS multijet background estimated assuming charge symmetry: $N_{\rm OCD}^{2\tau \rm OS} = N_{\rm OCD}^{2\tau \rm SS}$.

- Control Regions designed to measure Z+jets, $t\overline{t}$, and multijet background normalisations, which free-float in the fit to data.
- **Uncertainties:** The main uncertainty sources in this analysis come from Monte Carlo and data statistics, followed by the background normalisations and $t\overline{t}$ modelling.

