Search for higgsinos INFN **EXPERIMENT** with compressed spectra Istituto Nazionale di Fisica Nucleare Sezione di Milano exploiting a low-momentum track with large transverse impact parameter

Alessandro Sala on behalf of the ATLAS Collaboration - ICHEP 2024, Prague

1 Extending the SM with SUSY

- SUSY is one of the most compelling Standard Model extensions (SM)
- particles which Introduces a new set of can
- ▶ Validation Regions (VRs) with similar bkg. composition as the SRs or with different lepton, photon content used to validate bkg. estimation strategy before unblinding SRs $\frac{1}{2}$ SR $\mu_{ au ext{-}\mathsf{A}'}$

provide explanations to many still open problems ▶ Higgs boson mass hierarchy

▶ Nature of the Dark Matter content of the Universe $(g-2)_{\mu}$ anomaly between theory and experiments

2 Compressed higgsinos @ LHC

4 Time to unblind!

- ▷ Since $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim \mathcal{O}(1 \text{ GeV})$ between the higgsinos, a $\tilde{\chi}_1^{\pm}$ can travel a few millimetres from pp vertex eV] before decaying to a soft pion. Final state: , ₂₀ \triangleright Large missing transverse momentum $E_{\rm T}^{\rm miss}$ due to $\tilde{\chi}_1^0$ boosted by the recoiling jet
 - ▶ Isolated π^{\pm} track with finite displacement $d_0 \sim mm$ from pp vertex \implies selection on significance $S(d_0)$

3 The analysis at a glance

Signal Regions (SRs) enriched in SUSY signals ▶ $E_{\rm T}^{\rm miss} > 600 \text{ GeV}$, $S(d_0) > 8$ and $2 < p_{\rm T}^{\rm track}/{\rm GeV} < 5$ > Control regions (CRs) to constrain SM backgrounds

 \triangleright "QCD tracks": hadron decay/pileup tracks in V + jetsevents \implies estimation via data-driven ABCD method ▶ " τ tracks": pion/lepton track in $W(\rightarrow \tau \nu)$ events, tagged as signal-like \implies estimation via Monte Carlo simulation normalisation to data

5 Conclusions

- Brand new analysis targeting compressed higgsinos using soft displaced tracks
- ▶ No significant excess over SM predictions
- Exclusion limits covering for the first time since LEP the region with $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim \mathcal{O}(1 \text{ GeV})!$

 $m(\tilde{\chi}_1^\pm$