

Stephanie Kwan¹ on behalf of the CMS Collaboration Princeton University ICHEP 2024 July 18-24 (Prague, Czech Republic)

Abstract: Properties of an extended Higgs sector remain loosely constrained by current measurements, making direct searches for exotic Higgs decays a powerful probe of new physics. We present a recent search at CMS for exotic decays of the 125 GeV Higgs boson into two light neutral scalars to final states with bottom quarks and tau leptons or muons, $h \rightarrow aa \rightarrow 2b2\tau/2b2\mu$ (HIG-22-007, EPJ C 84, 493 (2024)). This search sets some of the most stringent limits to date in several scenarios of Two Higgs Doublet Models extended with a singlet scalar (2HDM+S), for scalar masses ranging from 12 GeV to 60 GeV.

$h \rightarrow aa \text{ in } 2HDM+S$

Theories with supersymmetry (SUSY), such as Two Higgs Doublet Models (2HDM), may provide a compelling solution to the hierarchy problem:

- Four types of 2HDM extended with a singlet scalar (2HDM+S) prevent flavour-changing neutral currents $\int_{\frac{1}{2}}^{\infty} 10^{-2}$ at tree-level, and predict seven Higgs particles
- 2HDM+S are parametrized with $\tan \beta$, the ratio of vacuum expectation values of the two doublets ϕ_1,ϕ_2

	Type I	Type II	Type III (lepton- specific)	Type IV (flipped)
right-handed leptons	Ф1	Ф2	Ф2	Ф1
up-type quarks	Ф1	Φ1	Ф1	Ф1
down-type quarks	Ф1	Ф2	Ф 1	Ф2

Predicted branching fraction of exotic decays of the 125 GeV Higgs boson $B(h \rightarrow aa)$ in 2HDM+S Type I (arXiV:1312.499). Emphasis on bb and $\tau\tau$ own.

Main improvements for full Run-2 analysis

Main improvements with respect to the 2016-only search:

- Reconstruction of full di-tau mass $m_{\tau\tau}$ (instead of visible-only components)
- More sophisticated event categorization with 1 and 2 b-tag jet categories and DNN-based categorization, instead of cut-based
- Combination with full Run-2 $2b2\mu$ results (HIG-21-021)

 $2b2\mu$ search strategy: exploit clean di-muon mass resolution, with $m_{\mu\mu} = m_{bb}$ and $m_{2\mu2b} = 125$ GeV

Analysis strategy: $h \rightarrow aa \rightarrow 2b2\tau$

Full Run-2 Results: $h \rightarrow aa \rightarrow 2b2\tau$

Three $\tau\tau$ channels $(\mu\tau_h, e\tau_h, e\mu)$ were targeted, with events also required to have at least | b-tag jet:

	Object selection: All years			
	eµ	eτ _h	μτ _h	
pT(b)	>20 GeV	>20 GeV	>20 GeV	
η(e)	<2.4	<2.1	-	
η(μ)	<2.4	-	<2.1	
η(τ(h))	-	<2.3/2.1	<2.3/2.1	
ŋ(b)	<2.4	<2.4	<2.4	
iso(e)	<0.10	<0.15	-	
iso(µ)	<0.15	-	<0.15	
ΔR	>0.3	>0.4	>0.4	

Backgrounds: Data-driven methods used for jet faking τ_h ($\mu \tau_h, e \tau_h$), and QCD background $(e\mu)$, and Embedded samples for $Z \rightarrow \tau \tau$ (all

channels)

region (left) and signal region 1 (right)

Events with I and 2 b-tag jets are separated, and a deep neural network was used to further categorize events. The final fit was performed to the full $m_{\tau\tau}$ (reconstructed from visible components)

Observed limits of 2-6% on $B(h \rightarrow aa \rightarrow 2b2\tau)$, compared to 3.5-11% from 2016-only analysis

5% CL upper lim $\mu \tau_h$ channel $e\tau_h$ channel m_{a.} (GeV) 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV 95% CL upper lim 95% expected $e\mu$ channel all channels

m_a (GeV)

Combined results with the $2b2\mu$ final state give some of the most stringent limits on $B(h \rightarrow aa)$ in the mass range m_a 12 to 60 GeV at CMS

Limits on $B(H \rightarrow aa \rightarrow 2b2\mu)$

for m_a (15, 60) GeV

Combined Run-2 results: $h \rightarrow aa \rightarrow 2b2\tau/2b2\mu$

Results from $h \to aa \to 2b2\tau$ and $h \to aa \to 2b2\mu$ (HIG-21-021) are combined to obtain stronger limits than the individual analyses:

Conclusions and future work

• The Higgs is a one-of-a-kind way to test theories such as Two Higgs Doublet Models extended with a singlet scalar (2HDM+S) which may provide a natural solution to the hierarchy problem

- The full Run-2 search for $h \rightarrow aa \rightarrow 2b2\tau$, combined with the $2b2\mu$ final state, gives the some of the most stringent limits on $B(h \rightarrow aa)$ for m_a from 12 to 60 GeV
- Analysis is statistics-limited: future work will explore new phase spaces

References

 $I. h \to aa \to 2b2\tau/2b2\mu$: HIG-22-007 (<u>arXiv:2402.13358</u>). Eur. Phys. J. C 84, 493 (2024). 2. $h \rightarrow aa \rightarrow 2b2\mu$: CMS-PAS-HIG-21-021. 3. Curtin et. al 2017 (arXiv:1312.4992v6). 4. Summary of 2HDM+S searches at 13 TeV (Run 2), HIG public results (https://twiki.cern.ch/twiki/bin/view/CMSPublic/ Summary2HDMSRun2).

m_a (GeV)

5. Poster template originally by Nikki Marinsek.

Email: skwan@princeton.edu, LinkedIn: stephanie-k-kwan

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. #DGE-1656466. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.