

Search for Beyond Standard Model (BSM) Higgs bosons

in final states with bottom quarks with the full Run 2 CMS dataset [1].

Daina Leyva Pernía (DESY) on behalf of the CMS Collaboration

Why search for BSM Higgs bosons?

Strong indications the Standard Model (SM) is not complete

An extended Higgs sector can lead to a much richer phenomenology, e.g.:

- Two Higgs doublet Models (2HDM)
- Minimal Supersymmetric extension of the SM (MSSM)

2HDM and MSSM feature two complex scalar doublets

- \succ Five physical Higgs bosons: H^+ , H^- , A (CP-odd), H, and h (CP-even) $\rightarrow \phi$
- Enhanced coupling to b-quarks in 2HDM in type 2 (MSSM-like sector) and flipped (leptons disfavoured) scenarios

Free parameters (among others) $\tan \beta$: ratio of v.e.v. of the two doublets α : mixing angle of the two scalars (2HDM only) m_A : mass of the CP-odd neutral boson $cos(\beta - \alpha) \approx 0$: alignment limit, h couplings become SM-like

Analysis categories and event selection

2017 and 2018 dataset analyzed and combined with CMS 2016-only results [2]

- Fully Hadronic (FH) category, targeting high-masses [300 1800] GeV
- Semi-leptonic (SL) category, one muon selected within one of the two leading jets to lower jet momentum thresholds, targeting lower masses, [125 – 700] GeV (available only in 2017)

Dedicated triggers:

FH: at least two jets, online b-tagged & SL: at least two jets, online b-tagged, a muon within a jet

Offline selection:

At least three offline b-tagged jets (DeepJet algorithm)

iet^{1,2}: passing the medium WP

• Searching for excess in di-jet mass of the

- two-leading jets
- Cross section enhanced by up to $\sim 2tan^2\beta$ in MSSM and 2HDM
- Large multijet background, mainly from QCD
- Partially suppressed background through b-associated production

2017 FH: veto events with muon within a jet

Signal Model

Fourteen mass-points in total per analysis and category, simulated at NLO with POWHEG and PYTHIA 8 generator, parametrized with double-sided crystal ball function

Signal extraction

Simultaneous fit of SR: $B_{CR}(m_{12}) \times TF(m_{12}) + S(m_{12})$ and CR: $B_{CR}(m_{12})$, (where *S* is the fitted signal)

Validation

- \succ Background modelled as $VR = CR \times TF_{OCD}$, while signal model is directly taken from SR
- > Data is consistent with background-only hypothesis in all three analyses
- Successful commissioning of background

Data-driven background Model

estimation method and signal extraction

Systematic uncertainties

Largest impact on the signal model:

- > Online and offline b-tag scale factors (up to 20% effect in the normalization)
- > Jet energy scale and resolution (shape-altering and up to 5% normalization)

Largest impact on background model:

- Uncertainty on TF and CR parameters from the fit
- Uncertainty on choice of TF functional form (discrete profiling)

Results and Summary

2HDM interpretations

-0.5

121.4-126.9 fb⁻¹ (13 TeV)

1500

m_A [GeV]

 $\cos(\beta - \alpha)$

- Significant improvement achieved with full Run 2 combination
- \succ All mass-points within $\pm 2\sigma$ of expected limit, exception compatible with stat. fluctuations
- > Most stringent limits to date in searches with this final state

ICHEP 2024 PRAGUE

