

42nd International Conference on High Energy Physics

18th of July 2024, Prague

Resonant production of vectorlike quarks at the HL-LHC

<u>Ioana DUMINICA^{1,2}, Ioan-Mihail DINU¹, Adam JINARU¹, Bogdan DOBRESCU³, Calin ALEXA¹</u>

¹Particle Physics Department, IFIN-HH, Măgurele, IF 077125, Romania ²Faculty of Physics, University of Bucharest, Măgurele, IF 077125, Romania ³Theoretical Physics Department, Fermilab, Batavia, IL 60510, USA

• To evaluate the signal selection efficiency, we employed several Machine Learning models trained to discriminate against a multitude of relevant background sources.

- Our Random Forest of 100 decision trees and the BDT perform almost identically, showing AUC figures of 0.770 and 0.780 on ATLAS simulations.
- We have found out that even a diquark as heavy as 8.5 TeV may be discovered or ruled out by the end of the HL-LHC runs.

THEORETICAL MODEL

- We consider the diquark scalar as model independent, with the following characteristics: colour sextet, weak-singlet particle, +4/3 electric charge, decaying mainly into: +²/₃ charged scalars, up quarks, top quarks, VLQs.
- VLQs are Beyond Standard Model (BSM) fermions, arising in many Standard Model (SM) extensions.
- VLQs are easy to trigger and isolate, with an **experimental upper limit** of 1.5 TeV. A few characteristics of these fermions are: colour triplets, weak-singlet particles, $+\frac{2}{3}$ electric charge, main decay assumption: B.R.(W^+b):B.R.(Z^0t):B.R.(Ht) = 50%:25%:25%.

• Because we choose to increase the phase space as we lower the diquark scalar mass, the performance of our ML models is also decreasing.

- Depending on the random process of model parameter initialization, either the BDT or RF could end up slightly ahead on subsequent runs.
- We choose to work with the **RF model** because it is less prone to over-fitting.
- The RF model allows the selection of a clean sample of signal events which enables the identification of the scalar diquark resonance in the 6-jet invariant mass distribution.

ATLAS 10 S_{uu} mass S_{uu} mass CMS

MONTE CARLO SAMPLES

- We assume that each vectorlike quark decays into a W⁺ boson and a b quark. Given the very large invariant mass of the events, we focus on the 6-jet final state.
- For this study, we performed comprehensive Monte Carlo (MC) signal simulations for diquark masses ranging from 7 to 8.5 TeV.
- The kinematics of both signal and background are constrained by setting a **minimum invariant mass** of 5.5-7 TeV, according to each sample.
- Data samples of numerous background processes were produced: $2 \rightarrow$ 2 QCD, W+jets, Higgs processes, dibosons, ttbar.
- All samples have been generated at centre-of-mass energies of 13 and 13.6 TeV at the LHC and HL-LHC, using both ATLAS and CMS detector configurations respectively.

- S/B has lower values for $m_s = 7$ TeV, while for higher masses we see a increasing performance of our RF model as depicted in the first two plots.
- Regardless of the invariant mass, center-of-mass energy or detector, the S/B variable increases similarly with tighter working points. The cross-section brings the main difference.

0.0 -7.0 8.5 7.5 8.0 *m*₅ [TeV]

MACHINE LEARNING ANALYSIS

- We tested 3 classification models: **Boosted Decision Tree** (BDT), Random Forest (RF) and Neural Networks (NN).
- Input variables: jet kinematics $(p^{(i)}_{\tau}, \eta^{(i)}, \phi^{(i)})$, jet pair $\Delta R^{(i,j)}$, 2-jet&3-jet invariant mass, event level multiplicity, N_{ii} whose combined mass is m_{w} ±20 GeV, minimum m_{ii} etc.
- All our ML models perform similarly.

MAIN REFERENCES

[1] <u>https://arxiv.org/abs/2206.09997</u>

[2] <u>http://www.arxiv.org/abs/1810.09429</u>

[3] <u>https://arxiv.org/abs/1912.13155</u>

- We studied the potential of observing the resonant production of VLQs through a diquark scalar at the LHC and HL-LHC.
- We produced MC signal samples of S_{III} decaying into 2 VLQs, which subsequently decay hadronically resulting in a 6-jet final state.
- Three different ML models are used, showing **similar performance** for our case. We chose to work with the RF model.
- For m_s≥7.5TeV and discriminant value greater than 0.97, we obtain S/B values approaching 5, close to a discovery or a ruled out situation.
- We plan to continue our study by further investigating the semi-leptonic and the fully leptonic decay modes of the same channel.
- Considering the other decay possibilities of our VLQs, we foresee an in-depth analysis of all other final states.