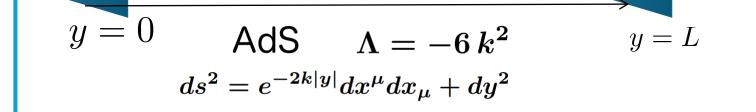

W boson mass in gauge-Higgs unification

Yuta Orikasa(CTU, IEAP)


Phys.Rev.D 108 (2023) 11, 115036

Collaborator: Shuichiro Funatsu, Hisaki Hatanaka, Yutaka Hosotani, Naoki Yamatsu

$SO(5) \times U(1)$ gauge-Higgs Unification model in Randall-Sundrum space-time

Motivation Higgs boson is a component of higher Quadratic divergence is protected			Particle contents			
dimensional gauge boson	by gauge symmetry	Field	G_{3221}	Left	Right	Name
Randall-Sundrum spacetime	Gauge symmetry	$\overline{\Psi^{lpha}_{(3,4)}}$	$({\bf 3},{\bf 2},{\bf 1})_{rac{1}{6}}$	(+, +)	(-, -)	$u_j \\ d_j$
Flat spacetime	$SO(5) \times U(1)_X$		$({\bf 3},{\bf 1},{\bf 2})_{rac{1}{6}}$	(-, -)	(+, +)	$u'_j \\ d'_j$
•		$\Psi^{\pmlpha}_{({f 3},{f 1})}$	$({\bf 3},{\bf 1},{\bf 1})_{-rac{1}{3}}$	(\pm,\pm)	(\mp,\mp)	D_j^\pm
• low KK mass scale : m_{kk} =600GeV	Boundary Condition GO(4) = U(1) = GU(0) = U(1)		$(1, 2, 1)_{-\frac{1}{2}}$	(+, +)	(-, -)	${ u_e \over e}$
 Light Higgs boson : m_h=10 GeV 	$\rightarrow SO(4) \times U(1)_X \simeq SU(2)_R \times SU(2)_L \times U(1)_X$	$\Psi^{lpha}_{(1,4)}$	$({f 1},{f 1},{f 2})_{-rac{1}{2}}$	(-, -)	(+, +)	$ u'_e \\ e' $
⇒Randall-Sundrum(RS) spacetime	$\begin{aligned} A_{\mu}(x,-y) &= PA_{\mu}(x,y)P^{-1} & A_{y}(x,-y) &= -PA_{y}(x,y)P^{-1} \\ A_{\mu}(x,L-y) &= PA_{\mu}(x,L+y)P^{-1} & A_{y}(x,L-y) &= -PA_{y}(x,L+y)P^{-1} \end{aligned}$		$({\bf 3},{\bf 2},{\bf 1})_{rac{1}{6}}$	(-, +)	(+, -)	F_{1j} F_{2i}
Two branes and negative		Ψ_F	$({\bf 3},{\bf 1},{\bf 2})_{1\over 6}$	(+, -)	(-, +)	$F'_{1j}\\F'_{2j}$
cosmological constant	$A_{\mu} = \begin{vmatrix} (+,+) \\ (-,-) \end{vmatrix} \qquad \qquad A_{y} = \begin{vmatrix} (-,-) \\ (+,+) \\ (-,-) \end{vmatrix}$	$\lambda \tau (\pm \beta)$	$(1, 2, 2)_0$	(\pm,\pm)	(\mp,\mp)	$egin{array}{ccc} N^\pm & \hat{E}^\pm \ E^\pm & \hat{N}^\pm \end{array}$
$SO(5) \times U(1)_X$		$\Psi^{\pmeta}_{(1,5)}$	$(1, 1, 1)_0$	(\mp,\mp)	(\pm,\pm)	S^{\pm}
		χ^{lpha}	$(1, 1, 1)_0$			X
	P = diag(-1, -1, -1, -1, 1)	$\Phi_{(1,4)}$	$(1, 2, 1)_{\frac{1}{2}}$		••••	$\Phi_{[2,1]}$
	Brane scalar massless		$(1, 1, 2)_{\frac{1}{2}}$	•••	•••	$\Phi_{[1,2]}$

Kaluza-Klein mode

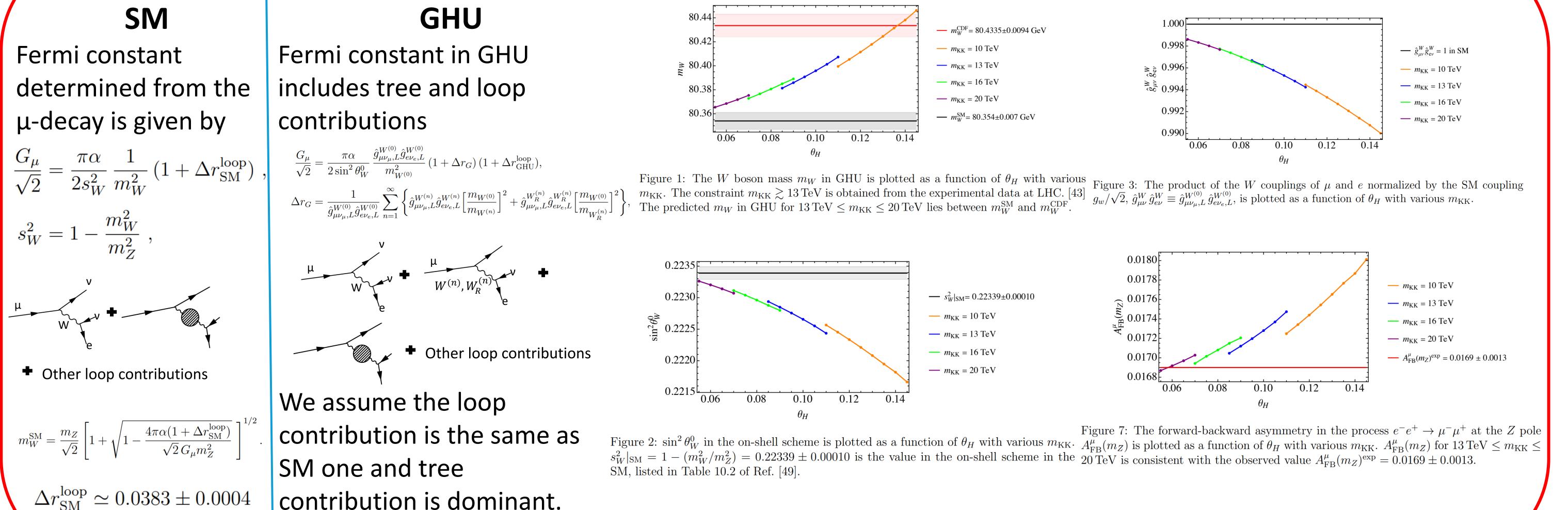
In higher dimensional theory, SM fields are expanded by Kaluza-Klein(KK) modes. The typical mass scale is called KK mass scale: m_{kk}

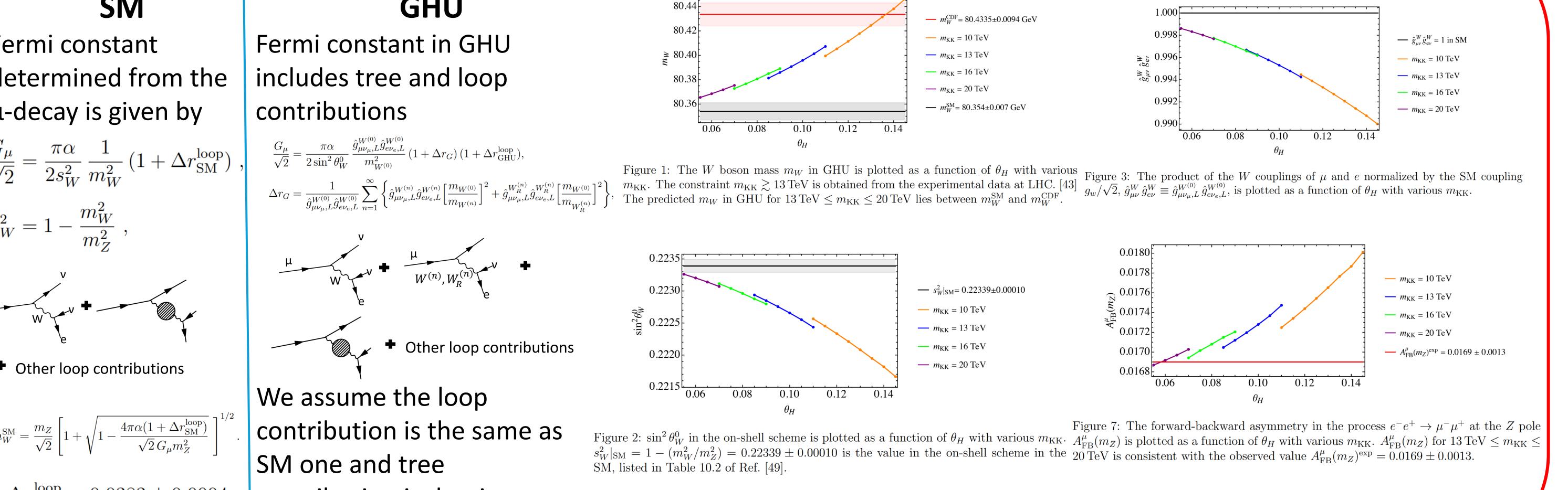
 $\rightarrow SU(2)_L \times U(1)_Y$ W_R, Z_R are massive $S_{\text{brane}}^{\Phi} = \int d^5 x \sqrt{-\det G} \delta(y) \Big\{ - (D_{\mu} \Phi_{(\mathbf{1},\mathbf{4})})^{\dagger} D^{\mu} \Phi_{(\mathbf{1},\mathbf{4})} - \lambda_{\Phi_{(\mathbf{1},\mathbf{4})}} \big(\Phi_{(\mathbf{1},\mathbf{4})}^{\dagger} \Phi_{(\mathbf{1},\mathbf{4})} - |w|^2 \big)^2 \Big\},$ $D_{\mu}\Phi_{(1,4)} = \left\{ \partial_{\mu} - ig_A \sum_{n=1}^{10} A^{\alpha}_{\mu} T^{\alpha} - ig_B Q_X B_{\mu} \right\} \Phi_{(1,4)} .$ VEV of the brane scalar breaks SO(4) symmetry Hosotani mechanism W, Z are massive $\rightarrow U(1)_{em}$

Wilson line phase θ_H is given by

 $exp\left(\frac{i}{2}\theta_H 2\sqrt{2}T^{\hat{4}}\right) = exp\left(ig_A \int_0^L dy \langle A_y \rangle\right)$

 $\theta_H \neq 0 \implies SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$


 θ_H is a minimum of the effective potential


Gauge and Yukawa couplings							
Gauge and Yukawa couplings are							
determined by the integration of fifth							
dimension Table 2: The masses $m_{W^{(n)}}$ and couplings $\hat{g}_{e\nu_e,L}^{W^{(n)}}$, $\hat{g}_{\mu\nu_\mu,L}^{W^{(n)}}$ $(n = 0, 1, \dots, 9)$ are shown for $m_{\mathrm{KK}} = 13 \mathrm{TeV}$ and $\theta_H = 0.10$ with $\sin^2 \theta_W^0 = 0.22266$. Right-handed couplings are very small; $ \hat{g}_{e\nu_e,R}^{W^{(n)}} < 2 \times 10^{-20}$ and $ \hat{g}_{\mu\nu_\mu,R}^{W^{(n)}} < 8 \times 10^{-19}$ for $n \le 14$.							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
Free parameters 1 10199. 0.7845 7.88 × 10 ⁻³ 5.72126 5.44645 2 15857. 1.2198 5.07 × 10 ⁻³ 0.01858 0.01641							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\theta_H \text{ and } m_{KK}$ $\frac{3}{23102.}$ $\frac{1.7771}{1.7771}$ $\frac{3.48 \times 10}{2.20000}$ $\frac{2.20000}{1.72733}$ $\frac{1.7773}{0.00607}$ $\frac{0.00421}{0.00421}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

8 55135. 4.2412 1.46×10^{-3} 0.00173 0.00123 9 62056. 4.7735 1.30×10^{-3} 0.28815 0.20853

SM Fermi constant determined from the μ-decay is given by

W boson mass

