Probing T lepton dipole moments at future Lepton Collider

Introduction

The Lagrangian of SMEFT

The relevant effective Lagrangian of leptonic *g*-2 up to oneloop order, at a scale Λ larger than the electroweak scale: $E \ll \Lambda$ by an effective Lagrangian containing nonrenormalizable $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ invariant operators.

moment of the SM prediction:

 $\Delta a_{\tau} = a_{\tau}^{\exp} - a_{\tau}^{SM}$

•Significance: The anomalous magnetic moments (g-2) of leptons are crucial for probing the Standard Model and Potential New Physics. •Focus: Investigation of τ lepton g-2 at future colliders like FCC-ee or a Muon Collider. •Challenge: The short lifetime of the τ lepton has prevented precise measurements of its g-2, unlike the muon and electron.

 $= \frac{C_{eB}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) H B_{\mu\nu} + \frac{C_{eW}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) \tau^I H W_{\mu\nu}^I$ $+ \frac{C_T^{\ell}}{\Lambda^2} (\overline{\ell}_L^a \sigma_{\mu\nu} e_R) \varepsilon_{ab} (\overline{Q}_L^b \sigma^{\mu\nu} u_R) + h.c$

The resulting expression for Δa_{τ} at one-loop order is given by

The example of Results

Analysis cuts and efficiencies effectively reduce backgrounds, improving the reach on dipole operators at high-energy muon colliders.

Higher collider energies provide stronger constraints on Wilson coefficients.

 $\mu^+\mu^- \to \mu^+\mu^-\tau^+\tau^ \mu^+\mu^- \rightarrow \overline{\nu}_\mu \nu_\mu \tau^+ \tau$

The example of $\mu^+\mu^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

The calculation performed with MadGraph in this case considers the imposed cuts, as well as the efficiency of tagging and the background.

Left: 95% CL limits on the Wilson coefficients C_{eW} and C_{eB} from $\mu^+\mu^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ at muon colliders of different energies; Right: Showing the reach on Δa_{τ} as a function of center-of-mass Energy.

Conclusion

*Examining tau g-2 sensitivity at future high-energy muon colliders, which have the advantage of higher c.o.m. energy, corresponding higher luminosity, and larger cross-sections compared to FCC-ee.

*The NP responsible for $\Delta a_{\tau} < 10^{-4}$ can be also tested indirectly through the rare higgs decay $h \rightarrow$ $\tau^+ \tau^- \gamma$ and the high-energy processes $\mu^+ \mu^- \to \tau^+ \tau^-(h)$, $\mu^+ \mu^- \to \mu^+ \mu^- \tau^+ \tau^-(\bar{\nu}\nu\tau^+\tau^-)$ where the latter process enjoys a very large cross-section driven by vector-boson-fusion.

> Co-author: D.Buttazzo, G.Levati F.Maltoni, P.Paradisi

ZeQiang Wang zeqiang.wang@uclouvain.be CP3, UCLouvain

