A SMEFT Analysis of Third-generation New Physics

Lukas Allwicher

Physik-Institut, Universität Zürich

ICHEP 2024 18-24 July 2024 Prague, Czech Republic

Based on 2311.00020 with C. Cornella, G. Isidori and B. Stefanek

What is the scale of new physics?

- Only lower bounds for now
- From collider searches: $\Lambda_{\rm NP} \gtrsim 10 {\rm ~TeV}$
- $\Delta F = 2 \ (K \cdot \bar{K})$: $\Lambda_{\rm NP} \gtrsim 10^{5-6} \ {\rm TeV}$

How does NP couple to the different generations/flavours? SMEFT and 3rd generation New Physics (L. Allwicher)

Exploring the flavour structure

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

 $pp \to \tau \tau$

- Take e.g. Drell-Yan at LHC: $pp \rightarrow \ell_{\alpha} \ell_{\beta}$
- Lighter quark flavours are more constrained
- The same applies also to other observables (see flavour, electroweak)

NP coupling mostly to the third generation is still compatible with $\Lambda_{\rm NP} \sim \mathcal{O}(1)$ TeV

EFTs parametrise our ignorance

• In the presence of a mass gap $v \ll \Lambda_{\rm NP}$, we can encode NP effects in coefficients of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i^{(6)} + \cdots$$

- Allows for model-independent analyses
- But: 2499 independent parameters at d = 6!

 \rightarrow flavour assumptions to reduce the parameter count

Flavour symmetries: the U(2) paradigm

• Yukawa terms break $U(3)^5$ flavour symmetry of \mathcal{L}_{SM}^{gauge} :

$$U(3)^5 \xrightarrow{\mathcal{L}_{\text{Yukawa}}} U(1)_B \times U(1)_L$$

• However, light family Yukawas very small: approximate $U(2)^5$ symmetry [Barbieri, Isidori, Lodone, Straub 1105.2296]

$$Y \simeq y_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad U(2)^5 = U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$$

Minimal breaking:

$$Y = y_3 \left(\begin{array}{c} \Delta & V \\ 0 & 1 \end{array} \right) \qquad |V_q| = \epsilon_q = \mathcal{O}(y_t V_{ts}) \quad |\Delta| \sim y_{c,s,\mu}$$

• idea: impose $U(2)^5$ on the SMEFT

$U(2)^5$ symmetry at work

• ψ^2 operators: e.g. \mathcal{C}_{He}

$$\mathcal{L}_{\text{SMEFT}} \supset [\mathcal{C}_{He}]_{ij} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{e}_i \gamma^{\mu} e_j) \xrightarrow{U(2)^5} \mathcal{C}_{He}^{[33]} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{e}_3 \gamma^{\mu} e_3) + \mathcal{C}_{He}^{[ii]} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) \sum_{i=1}^2 (\bar{e}_i \gamma^{\mu} e_i)$$

- $6 \rightarrow 2$ independent coefficients
- ψ^4 operators: e.g. C_{lequ}

$$\mathcal{L}_{\text{SMEFT}} \supset [\mathcal{C}_{\ell equ}]_{ijkl}(\bar{\ell}_i e_j)(\bar{q}_k u_l) \xrightarrow{U(2)^5} \mathcal{C}_{\ell equ}^{[3333]}(\bar{\ell}_3 e_3)(\bar{q}_3 u_3)$$

• $81 \rightarrow 1$ independent coefficients!

Third generation New Physics and U(2)

- NP is not flavour universal
- Mainly coupled to the $3^{\rm rd}$ generation
- Coupling to light generations dynamically suppressed \rightarrow avoid flavour and collider constraints
- Mimicks the SM Yukawa sector \leftrightarrow SM flavour puzzle
- Approximate U(2) symmetry
- Construct invariants from bilinears:

Exact $U(2)^5$

Minimally broken $U(2)^5$

$$\bar{q}_L^3 \gamma_\mu q_L^3 + \epsilon \bar{q}_L^i \gamma_\mu q_L^i$$

$$\bar{q}_L^i V_q^i \gamma_\mu q^3 \qquad V_q \sim \mathcal{O}\begin{pmatrix} V_{td} \\ V_{ts} \end{pmatrix}$$

good way of suppressing the light families

flavour violating couplings

Which scales are we currently probing?

SMEFT and $U(2)^5$

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda^2}\sum_i \mathcal{C}_i \mathcal{O}_i^{(6)} + \cdots$$

- 2499 independent parameters at d = 6
- Exact $U(2)^5$: 124 CPC + 23 CPV

	[Faroughy, Isidori, Wilsch, Yamamoto 2005.05366													
	$U(2)^5$ [terms summed up to different orders]													
Operators	Exact		$O(V^1)$		$O(V^2)$		$\mathcal{O}(V^1, \Delta^1)$		$\mathcal{O}(V^2, \Delta^1)$		$O(V^2, \Delta^1 V^1)$		O(V	$^{3}, \Delta^{1}V^{1})$
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	-	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	-	29	-	29	-	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	-	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

 \rightarrow Study 124 CPC operators one-by-one

Data at different energy scales

SMEFT and 3rd generation New Physics (L. Allwicher)

[Fuentes-Martín, Ruiz-Femenia, Vicente, Virto 2010.16341]

- Take into account RGE effects by running up the Wilson coefficients entering the observables up to $\Lambda = 3$ TeV \rightarrow approximate full resummation using DsixTools
- Impose exact U(2) at the high scale
- Distinguish two cases for flavour-violating couplings:
 - U(2) basis up-aligned
 - U(2) basis down-aligned
- Construct the combined likelihood from collider, EW, and flavour observables as a function of the 124 CP conserving invariants
- Switch on one operator at a time \rightarrow get lower bound on $\Lambda_{\rm NP}$ (quote everything at 3σ)

Bounds on U(2)-symmetric operators

[LA, Cornella, Isidori, Stefanek 2311.00020]

- $\mathcal{O}(5-10)$ TeV bounds
- Can we go below $\Lambda_0 = 1.5$ TeV? 3rd gen. New Physics?

Suppressing the light families

- ε_Q for each light quark field
- ε_L for each light lepton field
- Operators with Higgs fields still give strong bounds (EWPO)

[LA, Cornella, Isidori, Stefanek 2311,00020]

Suppressing Higgs couplings

[LA, Cornella, Isidori, Stefanek 2311.00020]

- ε_H for each Higgs field
- Some flavour bounds still large (in the up-aligned case)

Flavour alignment

$$q_{3} = \left[(1 - \varepsilon_{F}) \delta_{3r} + \varepsilon_{F} V_{3r} \right] q_{r}^{(d)} \approx q_{b} + \varepsilon_{F} (V_{ts} q_{s} + V_{td} q_{d})$$

$$= \left[(1 - \varepsilon_{F}) (V^{\dagger})_{3r} + \varepsilon_{F} \delta_{3r} \right] q_{r}^{(u)} \approx \varepsilon_{F} q_{t} + (1 - \varepsilon_{F}) (V_{cb}^{*} q_{c} + V_{ub}^{*} q_{u})$$
• 15% down-alignment needed to pass B_{s} mixing constraint

🛛 Flavor 🔛 EW 🗖 Collider

Projections for FCC-ee (Z-pole)

[LA, Cornella, Isidori, Stefanek 2311.00020]

- 5×10^{12} Z bosons at FCC
- Precision in EWPO improved by up to 2 orders of magnitude

- Investigated the SMEFT in the $U(2)^5$ -symmetric limit, including flavour, EW, and collider data
- Accounted for RG effects from a NP scale $\Lambda=3~{\rm TeV}$
- Third-generation NP scenario "enforced" by introducing suppression factors ε_i
- For

$$\varepsilon_Q \lesssim 0.16$$
 $\varepsilon_L \lesssim 0.40$ $\varepsilon_H \lesssim 0.31$ $\varepsilon_F \lesssim 0.15$

NP scale can be as low as $\Lambda_0 = 1.5$ TeV

• Expect one order of magnitude improvement at FCC-ee (driven by EWPO)

Thank you!

Backup

Suppressing the light families

[LA, Cornella, Isidori, Stefanek 2311.00020]

- So far, only $U(2)^5$ protection
- No suppression of operators involving the light families
- ε_Q for each light quark field
- ε_L for each light lepton field

Examples:

$$\begin{split} \mathcal{C}_{He}^{[ii]}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)\sum_{i=1}^{2}(\bar{e}_{i}\gamma^{\mu}e_{i}) \rightarrow \varepsilon_{L}^{2}\,\mathcal{C}_{He}^{[ii]}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)\sum_{i=1}^{2}(\bar{e}_{i}\gamma^{\mu}e_{i})\\ \mathcal{C}_{\ell q}^{(1)[iijj]}\sum_{i,j=1}^{2}(\bar{\ell}^{i}\gamma^{\mu}\ell^{i})(\bar{q}^{j}\gamma_{\mu}q^{j}) \rightarrow \varepsilon_{L}^{2}\varepsilon_{Q}^{2}\,\mathcal{C}_{\ell q}^{(1)[iijj]}\sum_{i,j=1}^{2}(\bar{\ell}^{i}\gamma^{\mu}\ell^{i})(\bar{q}^{j}\gamma_{\mu}q^{j}) \end{split}$$

• Dial down ε_i until collider bounds are below $\Lambda_0 = 1.5 \text{ TeV}$

The Higgs and $U(2)^5$

- If we want to address both the Higgs hierarchy problem and the flavour puzzle, NP should couple to the Higgs as well
- Take e.g. a Z^\prime model, one generically gets contributions to EWPO

 $U(2)^5$ does not offer protection for these contributions

- Need to suppress the NP couplings to the Higgs to avoid EWPO constraints
- ε_H for each Higgs field in the EFT SMEFT and 3rd generation New Physics (L. Allwicher)

Flavour alignment in the 3rd generation

[LA, Cornella, Isidori, Stefanek 2311.00020]

- q_L^3 is somewhere in-between down-aligned and up-aligned
- ε_F to parametrise the amount of down-alignment:

$$\theta \sim V_{cb} \varepsilon_F$$

$$q_3 = \left[(1 - \varepsilon_F) \delta_{3r} + \varepsilon_F V_{3r} \right] q_r^{(d)} \approx q_b + \varepsilon_F (V_{ts} q_s + V_{td} q_d) = \left[(1 - \varepsilon_F) (V^{\dagger})_{3r} + \varepsilon_F \delta_{3r} \right] q_r^{(u)} \approx \varepsilon_F q_t + (1 - \varepsilon_F) (V_{cb}^* q_c + V_{ub}^* q_u)$$