

Search for $K_I \rightarrow \gamma + \text{dark photon}(\bar{\gamma})$ at the KOTO experiment National Taiwan University Tong Wu

* $\bar{\gamma}$: massless dark photon ICHEP 2024 July 18 @PRAGUE

Massless dark photon search in $K_r^0 \rightarrow \gamma \bar{\gamma}$

- $\bar{\gamma}$ is a hypothetical massless dark photon.
- Massless dark photon does not directly mix with the ordinary photon but could interact with Standard Model (SM) particles through direct coupling to quarks.
- In theoretical calculation: BR $(K_L \rightarrow \gamma \bar{\gamma}) < 1 \times 10^{-3} *$
- For this study, we took a 2-hour special run in June 2020 as the physics data.
 - The number of K_L^0 decay $\approx 1.29 \times 10^{10}$

*Su, JY., Tandean, J. *Eur. Phys. J. C* 80, 824 (2020). https://doi.org/10.1140/epjc/s10052-020-8338-3

KOTO (<u>K0</u> at <u>TO</u>kai) experiment aims to search for the rare Kaon decay at J-PARC

Photon from KOTO collaboration meeting in Seoul, Korea, June 2024

3

KOTO Detector

lead-scintillator sandwich

Hermetic veto system

Calorimeter

- cesium iodide crystal
- Photon detector
- Front: MPPC
- Back: PMT

Signal Identification for single γ

Signal Signature

- Only 1 photon cluster on CsI
- No in-time hit on other veto detectors.

Signal Region

- Signal region defined as:
 - Cluster Energy (E_{γ}) vs. Hit position (H_{XY}) in CsI
 - $900 < E_{\gamma} < 3000$ MeV

<u>Control region</u> is outside blind region

*K*⁰ decay backgrounds

- $K_L^0 \rightarrow 2\gamma$ is the major BG from K_L^0 decay
 - with one missing γ due to detection inefficiency
 - $N(K_L^0 \rightarrow 2\gamma) = 1.09 \pm 0.12_{\text{stat.}} \pm 0.05_{\text{syst.}}$ based on MC simulation
- BG sources from other KL decays were negligible.

TABLE. Summary of K_L decay background estimation.

Decays	#Events in S.R. (90% C.L.
$K_L^0 \to 2\gamma$	$1.09 \pm 0.12_{stat.} \pm 0.05_{syst.}$
$K^0_L \to \pi^{\pm} e^{\mp} \nu_e$	< 0.27
$K_L^0 \to \pi^{\pm} \mu^{\mp} \nu_{\mu}$	< 0.25
$K_L^0 \to \pi^+ \pi^- \pi^0$	< 0.17
$K_L^0 \to 3\pi^0$	< 0.18
$K_L^0 \to \pi^0 \pi^0$	< 0.05
Total	$1.09 \pm 0.12_{stat.} \pm 0.05_{syst.}$

MC: $K_L \rightarrow 2\gamma$

20

30

Neutron background

- Beam neutron hit CsI can have same signature as signal.
 - Single cluster on CsI
 - No in-time hit on veto
- Three techniques based on n- γ discrimination to suppress neutron background
 - Cluster Shape Discrimination with deep learning (<u>CSD</u>)
 - Pulse Shape Discrimination by using Fourier transform (<u>PSD</u>)
 - Shower Depth Measurement by CsI Both-End-Readout timing difference
- Neutron Sample (Al target runs)
 - Inserted an 3mm thickness aluminum plate target in front of the detector entrance to enhance the neutron in the beam.

Neutron background Three techniques to suppress neutron background

• Cluster Shape Discrimination (CSD)¹

• using CNN via Tensorflow

¹Y. C. Tung et al. 2024 Nucl. Instrum. Meth.848 A 1059 (2024), p. 169010. ² H Nanjo 2020 J. Phys.: Conf. Ser. **1526** 012025 • Shower Depth Measurement² (front) MPPC CsI Crystal PMT (back) Photon hit T_{MPPC} T_{PMT} H Nanjo 2020 *J. Phys.: Conf. Ser.* **1526** 012025 **Neutron hit** T_{MPPC} T_{PMT} 16000 14000 12000 10000 Photon 8000 6000 ____ Neutron 4000 2000 20 26 28 30 32 34 24 $\Delta T (ns) = T_{MPPC} - T_{PMT}$

Neutron background Estimation

- Combine three techniques rejected the neutron background by O(10⁻³) for *single cluster* with 83.9% γ acceptance.
- Number of neutron background in this analysis $N(neutron) = 11.57 \pm 4.42_{stat.} \pm 2.13_{syst.}$

Preliminary

1	Cut	Signal	Neutron
	Cui	Efficiency	Rejection
	ΔT	95.3%	1.86×10^{-1}
S	$\Delta T + PSD$	85.6%	4.88×10^{-2}
.0	ΔT +PSD+CSD	83.9%	1.78×10^{-3}

Single Event Sensitivity

- Single Event Sensitivity (SES)
 - The branching ratio if one signal event is observed

$$SES = \frac{}{A_{sig}}$$

- A_{sig} : Signal Acceptance evaluated by MC
- $N(K_L^0)$: K_L^0 yield calculated by $K_L^0 \to 3\pi^0$ decay

$$N(K_L^0) = \frac{N(K_L^0 \to 3\pi^0)}{A_{K_L^0 \to 3\pi^0} \times BR(K_L^0 \to 3\pi^0)} = 1.29 \times 10^{10}$$

$$A_{sig} = 2.66 \times 10$$

 $\frac{1}{K \times N(K_L^0)}$

Summary of the Background estimation

$SES = (2.91 \pm 0.05_{stat.} \pm 0.30_{syst.}) \times 10^{-8}$

N (background) = 12.66 ± 4.42

TABLE. Summary of background estimation.

Sourc	e	Number of events
KL	$K_L \rightarrow 2\gamma$	$1.09 \pm 0.12_{stat.} \pm 0.05_{syst.}$
	Other K _L decays	< 0.92
Neutro	on	$11.57\pm4.42_{stat.}\pm2.13_{syst}$
Total	(Exclude upper limit)	$12.66\pm4.42_{stat.}\pm2.13_{syst}$

#Observed #Expect BG

In blind region: 23.49

- #Observed = 13
- Estimated $\#BG = 12.66 \pm 4.42_{stat.} \pm 2.13_{syst.}$
- $SES = (2.91 \pm 0.05_{stat.} \pm 0.30_{syst.}) \times 10^{-8}$
- Feldman Cousins (90% C.L.)
 - $BR < 3.47 \times 10^{-7}$

4000

3000

2000

1000

#Observed

Summary

- We performed the first search of massless dark photon in $K_I^0 \rightarrow \gamma \bar{\gamma}$ at KOTO
- 13 events were observed in the S.R. with the predicted #BG of 12.66
- 2 hour special run)
 - $\mathscr{B}(K_L^0 \to \gamma \bar{\gamma}) < 3.47 \times 10^{-7} \text{ (at 90\% C.L.)}$

• With the SES of $(2.91 \pm 0.05_{stat.} \pm 0.30_{syst.}) \times 10^{-8}$ (based on data collected in

Veto threshold

Veto CV FB, MB, IB, N MBCV, IBCV CC03, CC04, OEV BHPV BHGC

	Threshold
	0.2 MeV
JCC	1 MeV
	1 MeV
CC05, CC06	3 MeV
	1 MeV
	2.5
	2.5

Normalization of Neutron sample

• Inverse Neutron Cut to purify the Neutron sample.

- CSDVal < 0.1
- Obtain the Scale Factor through area normalization of the sideband region.

Single Event Sensitivity

$$SES = \frac{A_{3\pi^0}}{A_{sig}} \times \frac{BR(K_L \to 3\pi^0)}{N_{K_L \to 3\pi^0}}$$

• $A = A_{veto} \times A_{kin} \times A_{neutron} \times A_{geometric} \times A_{trig}$

• Uncertainty:
$$\sigma = \sqrt{\sum D_i^2}$$

• Deviation of of *i*-th cut: $D_i = \frac{a_i(MC) - a_i(Data)}{a_i(Data)}$

• Exclude acceptance of *i*-th cut: $a_i = \frac{\#e}{\#events wi}$

	Source	Uncertainty
	Veto cuts	6.6%
	Kinematic cuts for $K_L \rightarrow 3\pi^0$	3.3%
TTTTT	Kinematic cuts for $K_L \rightarrow \gamma \bar{\gamma}$	1.4%
	Neutron cuts for $K_L \rightarrow \gamma \bar{\gamma}$	4.8%
58 ^{C1}	K _L momentum spectrum	0.9%
	Trigger effect	1.6%
	$K_L \rightarrow 3\pi^0$ branching ratio	0.6%
	Total	9.1%
ta)		

events with all cuts	N(w/all cut)
ith all cuts except the <i>i</i> -th cut	$\frac{1}{N(w/o \operatorname{cut} i)}$

Systematic Uncertainty $K_L \rightarrow 2\gamma$ backgrounds

- Ratio of *Signal* and *Control* region: $R = \frac{N(Signal)}{N(Control)}$
- Deviation: $D = \frac{R(\text{Neutron}) R(Data)}{R(Data)}$
- Uncertainty: $\sigma = \sqrt{\sum D_i^2} = 4.86 \%$

H_{XY} (mm)

Systematic Uncertainty Neutron backgrounds

- Normalization
 - Apply Inverse CSD cut to purify neutron sample
 - Ratio of *Signal* and *Normalized* region: *R* =
 - Deviation: $D = \frac{R(\text{Neutron}) R(\text{Data})}{R(\text{Data})}$ R(Data)
- Neutron Cut
 - Use the other two cuts $a_i =$ as inverse cut

N(inverse cut +*N*(inverse

•
$$D_i = \frac{a_i(\text{Data}) - a_i(\text{N})}{a_i(\text{Neutron})}$$

• Uncertainty: $\sigma = \sqrt{\sum D_i^2}$

H_{XY} (mm)

+ this cut)		
cut)	Source	Uncertainty
Neutron)	Normalization	12.7%
on)	Neutron Cut	13.4%
$\sqrt{\sum D^2}$	Total	18.5%

