42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

Implication of X17 boson to D meson, Charmonium and φ meson decays

Speaker: Lam Thi Thuc Uyen

Collaborators: Guey-Lin Lin and Fei-Fan Lee

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

ICHEP, 2024/07/19

1 Introduction

2 X17 hypothesis (vector case) from anomalous ${}^{8}Be$, ${}^{4}He$, and ${}^{12}C$ decays

Outline

- ³ Strengths of X17 couplings to light and heavy quarks
 - determined by fittings to D meson, Charmonium and ϕ meson decays
- 4 Conclusions

1 Introduction

2 X17 hypothesis (vector case) from anomalous ⁸Be, ⁴He, and ¹²C decays

Outline

Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

What is X17 boson?

PRL 116, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

> T. J. Ketel Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV $(J^{\pi} = 1^+, T = 1)$ state \rightarrow ground state $(J^{\pi} = 0^+, T = 0)$ and the isoscalar magnetic dipole 18.15 MeV $(J^{\pi} = 1^+, T = 0)$ state \rightarrow ground state transitions in ⁸Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of $> 5\sigma$. This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of $16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst}) \text{ MeV}/c^2$ and $J^{\pi} = 1^+$ was created.

~400 citations, ${}^{8}Be$ anomaly, a new light neutral boson

The Atomki experiment [Quanta Magazine]

1. Introduction

The Atomki experiment

FIG. 1.1. The proton beam collides the target lithium nuclear to produce the ${}^{8}Be^{*}$ state, which subsequently decays into the ${}^{8}Be$ ground state. This further breaks down into an electron-positron pair whose opening angle and invariant mass are measured.

1. Introduction

The Atomki experiment

FIG. 1.1. The proton beam collides the target lithium nuclear to produce the ${}^{8}Be^{*}$ state, which subsequently decays into the ${}^{8}Be$ ground state. This further breaks down into an electron-positron pair whose opening angle and invariant mass are measured.

Standard Model Internal Pair Creation Correlation (IPCC), where the nuclear emits a virtual photon which then decays to an e^+e^- pair. Hadronic decay ($BR \sim 1$) $^{8}Be^{*} \rightarrow ^{7}Li + p$ Electromagnetic decay ($BR \sim 1.5 \times 10^{-5}$) ${}^{8}Be^{*} \rightarrow {}^{8}Be + \gamma$ Internal pair creation ($BR \sim 5.5 \times 10^{-8}$) ${}^{8}Be^{*} \rightarrow {}^{8}Be + \gamma^{*} \rightarrow {}^{8}Be + e^{+}e^{-}$

M. E. Rose, Phys. Rev. 76 (1949).
P. Schlüter, G. Soff, and W. Greiner, Physics Reports 75 no. 6, (1981).
D. R. Tilley *et al.*, Nucl. Phys. A745 (2004).

$$m_X = 16.7 \pm 0.35 \text{ (stat)} \pm 0.5 \text{ (sys) MeV}$$

$$\frac{BR({}^8Be^* \to X + {}^8Be)}{BR({}^8Be^* \to \gamma + {}^8Be)} \times BR(X \to e^+e^-) = (6 \pm 1) \times 10^{-6}$$

1. Introduction

A. J. Krasznahorkay *et al.* [Atomki] (Oct 2019)

A. J. Krasznahorkay et al. [Atomki] (Nov 2022)

⁴*He* anomaly, X17 boson

 $p + {}^{3}H \rightarrow {}^{4}He^{*} \rightarrow {}^{4}He_{0} + e^{+}e^{-}$

¹²*C* anomaly, X17 boson

 $p + {}^{11}B \rightarrow {}^{12}C^* \rightarrow {}^{12}C_0 + e^+e^-$

1. Introduction

The decay: $H^* \rightarrow He^+e^-$ here, H^* is vector mesons with spin-parity 1^-

H is pseudoscalar mesons with spin-parity 0^-

Meson name	H *	Н	Quark content	$m{m}_{H^*}$ [MeV]	m_H [MeV]
D mesons	D*0 -	► D ⁰	$c \overline{u}$	2006.85 ± 0.05	1864.84 ± 0.05
	D*+ -	► D ⁺	$car{d}$	2010.26 ± 0.05	1869.66 ± 0.05
	D_{s}^{*+} –	$\rightarrow D_s^+$	CS	2112.2 ± 0.4	1968.35 ± 0.07
Charmonium	$\psi(2S)$ -	• $\eta_c(1S)$	сē	3686.097 ± 0.011	2984.1 ± 0.4
$oldsymbol{\phi}$ meson	φ(1020) –	γ	$\phi(sar{s})$ and $\eta\left(rac{uar{u}+dar{d}-2sar{s}}{\sqrt{6}} ight)$	1019.461 ± 0.016	547.862 ± 0.017

PDG (S. Navas et al., Phys. Rev. D 110, 030001 (2024))

FIG.1.1: Feynman diagram for intermediate photon

FIG.1.2: Feynman diagram for intermediate X boson

I) Introduction

2 X17 hypothesis (vector case) from anomalous ${}^{8}Be$, ${}^{4}He$, and ${}^{12}C$ decays

Outline

Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

Quark Coupling Constants ε_Q , ε_q $\mathcal{L}_{X(Q,q)} = \varepsilon_Q X_\mu (\bar{Q}\gamma^\mu Q) + \varepsilon_q X_\mu (\bar{q}\gamma^\mu q)$

Prague, 2024/07/19

D meson decays: $D^{*0}(c\bar{u}) \rightarrow D^0 e^+ e^ D^{*+}(c\bar{d}) \rightarrow D^+ e^+ e^ D^{*+}_s(c\bar{s}) \rightarrow D^+_s e^+ e^-$

 $\begin{aligned} \mathcal{J}_{\gamma}^{\mu} &= e \left(e_{Q} \mathcal{J}_{Q}^{\mu} + e_{q} \mathcal{J}_{q}^{\mu} \right) \\ \mathcal{J}_{X}^{\mu} &= e \left(\varepsilon_{Q} \mathcal{J}_{Q}^{\mu} + \varepsilon_{q} \mathcal{J}_{q}^{\mu} \right) \end{aligned}$

VMD D meson decays: $\Rightarrow D^{*0}(c\bar{u}) \rightarrow D^0 e^+ e^ \Rightarrow D^{*+}(c\bar{d}) \rightarrow D^+e^+e^ \Rightarrow D_s^{*+}(c\bar{s}) \rightarrow D_s^+e^+e^$ e^+ FIG. 2.5. The vector light quark current $\mathcal{J}^{\mu}_{\gamma} = e \left(e_Q \mathcal{J}^{\mu}_{O} + e_q \mathcal{J}^{\mu}_{Q} \right)$ $\mathcal{J}_{\boldsymbol{q}}^{\boldsymbol{\mu}} = \langle D(p_D) | \bar{q} \gamma^{\boldsymbol{\mu}} q | D^*(p_{D^*}, \epsilon_{D^*}) \rangle$ $= \sum \langle D(p_D) V(q,\eta) | D^*(p_{D^*},\epsilon_{D^*}) \rangle \frac{i}{q^2 - m_V^2} \langle 0 | \bar{q} \gamma^{\mu} q | V(q,\eta) \rangle$ $\mathcal{J}_X^{\mu} = e \left(\varepsilon_Q \mathcal{J}_O^{\mu} + \varepsilon_q \mathcal{J}_a^{\mu} \right)$

G.L.Castro, N.Quintero, Phys. Rev. D 093002 (2021)

- VMD is based on the assumption of ideal mixing for vector mesons resonances : $\rho^0\left(\frac{u\overline{u}-d\overline{d}}{\sqrt{2}}\right)$, $\omega\left(\frac{u\overline{u}+d\overline{d}}{\sqrt{2}}\right)$, $\phi(s\overline{s})$.
- The universality assumption of the X17 boson to quarks: $\varepsilon_u = \varepsilon_c$ and $\varepsilon_d = \varepsilon_s = \varepsilon_b$.

•
$$F_{D^*D\gamma}(q^2) = \sqrt{\frac{m_{D^*}}{m_D}} \left[\frac{e_Q}{m_{D^*}} + \frac{e_q}{m_q(q^2)} \right]$$
 and $F_{D^*DX}(q^2) = \sqrt{\frac{m_{D^*}}{m_D}} \left[\frac{\varepsilon_Q}{m_{D^*}} + \frac{\varepsilon_q}{m_q(q^2)} \right]$ with $m_q(q^2) = -\sum_{\mathcal{V}} \left(2\sqrt{2}g_{\mathcal{V}}\lambda \frac{f_{\mathcal{V}}}{m_{\mathcal{V}}^2} \right) \left(1 - \frac{q^2}{m_{\mathcal{V}}^2} \right)$

Prague, 2024/07/19

→ Charmonium decay: $\psi(2S)(c\bar{c}) \rightarrow \eta_c e^+ e^-$

$$\mathcal{R}_{\psi'\eta_c X}(q^2) = \frac{F_{\psi'\eta_c X}(q^2)}{F_{\psi'\eta_c \gamma}(0)} = \varepsilon_c \times \frac{F_{\psi'\eta_c \gamma}(q^2)}{F_{\psi'\eta_c \gamma}(0)} = \frac{\varepsilon_c}{1 - q^2/\Lambda_{\psi'\eta_c}^2}$$

- The VMD is used to explain the TFF $\mathcal{R}_{\psi'\eta_c\gamma}(q^2)$, where the virtual photon effectively couples to the vector meson resonance.
- The pole mass of the vector meson resonance $\Lambda_{\psi'\eta_c}$ nears the energy scale of the decaying particle $\psi(2S)$:

$$\Lambda_{\psi'\eta_c} = m_{\psi(3S)} = 3773.7 \pm 0.4 \text{ MeV}/c^2.$$

→
$$\phi$$
 meson decay: $\phi(1S)(s\bar{s}) \rightarrow e^+ e^- \eta \left(\frac{u\bar{u} + d\bar{d} - 2s\bar{s}}{\sqrt{6}}\right)$

$$\mathcal{R}_{\phi\eta X}(q^2) = \frac{F_{\phi\eta X}(q^2)}{F_{\phi\eta\gamma}(0)} = \frac{2}{\sqrt{6}} \varepsilon_s \times \frac{F_{\phi\eta\gamma}(q^2)}{F_{\phi\eta\gamma}(0)} = \frac{2}{\sqrt{6}} \frac{\varepsilon_s}{1 - q^2/\Lambda_{\phi\eta}^2}$$

with
$$\Lambda_{\phi\eta}=m_{\phi(2S)}=$$
 1680 \pm 20 MeV/ c^2 .

1) Introduction

2 X17 hypothesis (vector case) from anomalous ${}^{8}Be$, ${}^{4}He$, and ${}^{12}C$ decays

Outline

- ³ Strengths of X17 couplings to light and heavy quarks
 - determined by fittings to D meson, Charmonium and ϕ meson decays

4 Conclusions

- The photon mediated contribution is in good agreement with $R_{exp} = (7.2^{+1.8}_{-1.6}) \times 10^{-3}$.
- R_{ee} in label "VMD_2016" is completely inconsistent with the data R_{exp} .
- The reults from "VMD_2023" still somewhat consistent with the data in the decays $D_s^{*+} \rightarrow D_s^+ e^+ e^-$.

 $R_{ee} = R_{ee}^X + R_{ee}^\gamma$

G.L.Castro, N.Quintero, PhysRevD.103.093002 (2021)

Channel	$R^{\gamma}_{ee}(H^*)$	$R^X_{ee}(H^*)$	Total	Experiment		
$D^{*+} \rightarrow D^+ e^+ e^-$	6.67×10^{-3} V	$(1.05 \pm 0.07) \times 10^{-3}$	$(7.72 \pm 0.07) \times 10^{-3}$			
$D^{*0} ightarrow D^0 e^+ e^-$	6.67×10^{-3} V	3.02×10^{-5}	6.70×10^{-3} V			
$D_s^{*+} \rightarrow D_s^+ e^+ e^-$	6.72×10^{-3} V	$(3.10\pm0.60) imes10^{-3}$	$(9.82 \pm 0.60) imes 10^{-3}$	$(7.2^{+1.8}_{-1.6}) \times 10^{-3}$ [26]		
		$(2.62 \pm 1.3) \times 10^{-2}$	$(3.3 \pm 1.3) \times 10^{-2}$			
	The red numbers recalculated and revised					

 $R_{ee} = R_{ee}^X + R_{ee}^\gamma$

• A significant difference exists between the experimental data and theoretical models in the decays $D^{*0} \rightarrow D^0 e^+ e^-$.

• To resolve this situation, we need to change the value of $\varepsilon_c \Rightarrow$ remove the assumption of $\varepsilon_u = \varepsilon_c$ and $\varepsilon_d = \varepsilon_s$.

 $R_{ee} = R_{ee}^X + R_{ee}^\gamma$

D. Cronin-Hennessy et al. [CLEO Collaboration] (2012)
D. Babusci et al. (KLEO-2 Collaboration) (2015)
M. N. Achasov et al. [SND collaboration] (2001)
R. R. Akhmetshin et al. [CMD-2 collaboration] (2001)

Fig. 3.3. $(\varepsilon_c, \varepsilon_s)$ and $(\varepsilon_c, \varepsilon_u)$ are extracted from the data of D meson, Charmonium and ϕ meson decays.

M. Ablikim, et al. [BESIII Collaboration] (2021) M. Ablikim, et al. [BESIII Collaboration] (2022)

Prague, 2024/07/19

ICHEP 2024

Page 22

FIG. 3.4. χ^2 method for three parameters ε_c , ε_s and ε_u estimated at 1σ using four measurements from D meson, Charmonium and ϕ meson decays.

$$\chi^2 = \sum_{i=1}^{4} \frac{\left(R_i^{th}(\varepsilon_c, \varepsilon_s, \varepsilon_u) - R_i^{ob}\right)^2}{\sigma_i^2}$$

• $|\varepsilon_c| = 0.016$, $|\varepsilon_s| = 0.0063$, ε_c and ε_s have opposite signs.

• $|\varepsilon_u| = 0.052$ or 0.058, $\varepsilon_u \propto 10^{-2}$ (larger than ε_u determined from Atomki measurements).

The decay: $H^* \rightarrow He^+e^-$ here, H^* is vector mesons with spin-parity 1^-

H is pseudoscalar mesons with spin-parity 0^-

Meson name	<i>H</i> *	Н	Quark content	m_{H^*} [MeV]	m_H [MeV]
D mesons	D *0 -	→ D ⁰	cū	2006.85 ± 0.05	1864.84 ± 0.05
	D^{*+} –	→ D ⁺	$c \bar{d}$	2010.26 ± 0.05	1869.66 ± 0.05
	D_{s}^{*+} –	$\rightarrow D_s^+$	CS	2112.2 ± 0.4	1968.35 ± 0.07
Charmonium	$\psi(2S)$ –	• $\eta_c(1S)$	cī	3686.097 ± 0.011	2984.1 ± 0.4
ϕ meson	φ(1020) –	→ η	$\phi(sar{s})$ and $\eta\left(rac{uar{u}+dar{d}-2sar{s}}{\sqrt{6}} ight)$	1019.461 ± 0.016	547.862 ± 0.017

Atomki mesurements

 $\mathcal{E}_u, \mathcal{E}_d$

 $\varepsilon_u \propto (10^{-4} - 10^{-3})$

D meson, Charmonium, and ϕ meson decays

 $\varepsilon_u, \varepsilon_s, \varepsilon_c$

$$\varepsilon_u \propto 10^{-2}$$

1) Introduction

2 X17 hypothesis (vector case) from anomalous ${}^{8}Be$, ${}^{4}He$, and ${}^{12}C$ decays

Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

Outline

Conclusions

- □ The effects of the X17 boson in interactions with D meson, Charmonium, and ϕ meson decays are analyzed using the Vector Meson Dominance for calculating the transition form factors.
- □ Building upon the assumptions of generation universality $|\varepsilon_u| = |\varepsilon_c|$ and $|\varepsilon_d| = |\varepsilon_s|$, we have examined the decay process $D^{*0} \to D^0 e^+ e^-$, which is mediated by the X17 boson. Surprisingly, this decay process does not significantly enhance R_{ee} to align with the data. However, a more promising fit is observed in the decay $D_s^{*+} \to D_s^+ e^+ e^-$. This intriguing result suggests that merely knowing the couplings of the X17 boson with the up and down quarks is insufficient.
- □ Combined fittings to data from D meson, Charmonium, and ϕ meson decays opens up various possibilities regarding the magnitude and sign of ε_q and ε_Q . The best-fit values are $|\varepsilon_c| = 0.016$ and $|\varepsilon_s| = 0.0063$, while $|\varepsilon_u| = 0.052$ or 0.058. An ε_u with an absolute value about few times of 10^{-2} is not compatible with the data of anomalous ⁸Be, ⁴He, and ¹²C decays. The mode $D^{*0} \rightarrow D^0 e^+ e^-$ at BESIII is responsible for this serious tension.

BACKUP

FIG. 3.5. χ^2 method for three parameters ε_c , ε_s and ε_u estimated at 1,2,3 σ using four measurements from D meson, Charmonium and ϕ meson decays.

$$\chi^{2} = \sum_{i=1}^{4} \frac{\left(R_{i}^{th}(\varepsilon_{c}, \varepsilon_{s}, \varepsilon_{u}) - R_{i}^{ob}\right)^{2}}{\sigma_{i}^{2}}$$