

New physics results from the FASER experiment

CERN-FASER-CONF-2024-001

ICHEP 2024

18-24 July 2024

Jack C. MacDonald on behalf of the FASER collaboration

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

What is FASER?

- → (Relatively) new experiment at the LHC built and installed in 2019-2021
 - Successful data-taking throughout Run 3

→ Targets light and weakly interacting particles

- → ~7 m x 25 cm x 30 cm detector
- → ~480 m downstream of ATLAS IP
- → On collision axis line-of-sight

Google Earth, imagery (c)2023 Maxar Technologies, map data (c)2023; CERN; adapted by APS/Alan Stonebraker

ATLAS forward region

The FASER detector

The FASER detector

FASER operations

- → Continuous and largely automatic data taking in Run 3
 - Up to 2 kHz trigger rate in 2024
- → Recorded 97.4% of delivered luminosity
 - Limited by deadtime (<3%)
 - Luminosity information provided by ATLAS
 - Recently passed 100 fb⁻¹ of data collected!

BSM searches with FASER

Charged particle searches

- → Search for dark photons (A' → e⁺e⁻) <u>Phys. Lett. B 848 (2024) 138378</u>
 - Track-based analysis
 - ◆ 27.0 fb⁻¹

Multi-photon searches

- → Search for axion-like particles (ALPs) <u>CERN-FASER-CONF-2024-001</u>
 - Final state contains photons
 - Calorimeter/pre-shower-based analysis
 - ◆ 57.7 fb⁻¹

Focus of this talk

Axion-like particles at FASER

- → Axion-like particles (ALPs) are a general class of pseudoscalar SM-singlets
 - Appear in multiple proposed extensions to the SM
 - FASER is particularly sensitive to ALPs coupling to SU(2) gauge bosons → "ALP-W"

$$\mathcal{L} \supset -rac{1}{2}m_a^2 a^2 - rac{1}{4}g_{aWW}aW^{a,\mu
u} ilde{W}^a_{\mu
u}$$

ALP couples to weak gauge bosons and photons after EWSB

- FASER is most sensitive to parameter space with
 - m_a ~ 50 500 MeV and g_{aWW} ~ 10⁻⁵ 10⁻³ / GeV
 - Dominant production mechanism is via FCNC decays of B-mesons
 - Low mass ALPs \Rightarrow BR(ALP $\rightarrow \gamma\gamma$) ~ 100%

ALP signal simulation

- → ALP signal events are generated using the FORESEE package <u>arXiv:2105.07077</u>
 - POWHEG+Pythia8 is used to model production of B mesons
 - Subdominant contribution from kaons simulated with EPOS-LHC
- → Uncertainties on signal flux are the largest signal systematic in the analysis (~60%)
 - Scale variations for B hadron flux
 - Additional 20% uncertainty on BR for decays to LLPs
 - Envelope of generators for kaon flux

ALP event selection

→ Simple event selection optimised for discovery

- Require LHC collision event with good quality data analysis uses 57.7 fb⁻¹
- Initially blind data with no veto signal and E_{calo} > 100 GeV
- Calorimeter and pre-shower currently not able to resolve two photons

→ Find ~5-80% signal selection efficiency over parameter space FASER is sensitive to

Backgrounds - I

- → By far the dominant background is from CC neutrino interactions (v_e and v_u)
 - Estimated using neutrino MC predictions <u>Phys. Rev. D 110 (2024) 012009</u>
 - Neutrinos mostly produced from the decays of *light* and *charm* hadrons
 - <u>Light</u>: EPOS-LHC, with flux uncertainties from envelope of generators
 - <u>Charm</u>: NLO POWHEG+Pythia8, with flux uncertainties from scale variations

Backgrounds - II

→ Neutrinos interact in the magnets, calorimeter and pre-shower

- Can select these populations with good purity using cuts on pre-shower variables
- The signal region is dominated by neutrino interactions in the pre-shower
- The "magnet" and "calorimeter" regions are used for validation → good agreement

→ Neutral hadrons, large-angle muons, and cosmics/beam 1 background found negligible

Unblinded results - I

 \rightarrow 1 event observed in the SR with expectation of 0.42 ± 0.38 background events

- Background uncertainty dominated by the neutrino flux uncertainty (~80%)
- No discovery, but new exclusion limits set in previously uncovered parameter space
- Single event in SR has calorimeter energy of 1.6 TeV

Unblinded results - II

- → Analysis also sensitive to other multi-photon signatures
 - Exclude new parameter space for ALP-photon, ALP-gluon, U(1)_B and up-philic scalar

Unblinded results - III

- → Analysis also sensitive to other multi-photon signatures
 - Exclude new parameter space for ALP-photon, ALP-gluon, U(1)_B and up-philic scalar

Summary

- → FASER continuing to operate successfully in Run 3
 - Also approved to operate in <u>Run 4</u>
- → Constraints on previously unexplored ALP-W (and multi-photon) parameter space
 - Second of our BSM results following dark photon search
 - ◆ Big improvement expected with planned preshower upgrade → see <u>Andrea's talk</u>
- → FASER also has an extensive neutrino physics program
 - ◆ Both emulsion and electronic analyses → see <u>Sergey's talk</u>
- → Large upgrade to FASER planned for HL-LHC
 - Part of Forward Physics Facility (FPF) <u>arXiv:2203.05090</u>
 - ◆ Significant improvement to sensitivity expected → see <u>Alan's talk</u>

Thank you for your attention!

Backup

Manager Barrison Barrison

CMU 2t

ALP signal simulation

Trigger	and	Data	Quality	

Selecting events with calorimeter triggers

Calorimeter timing (> -5 ns and < 10 ns)

Baseline Selection

Veto/VetoNu Scintillator to have no signal (< 0.5 MIPs) Timing Scintillator to have no signal (< 0.5 MIPs)

Signal Region

Preshower Ratio to have EM shower in the Preshower (> 4.5) Second Preshower Layer to have signal (> 10 MIPs) Calorimeter to have a large deposit (> 1.5 TeV)

Selection	Efficiency	Cum. Efficiency
$m_a = 140 \text{ MeV}, g_{aWW} =$	$= 2 \times 10^{-4} \text{ Ge}$	eV^{-1}
Veto Signal nMIP < 0.5	99.6%	99.6%
Timing Scintillator Signal nMIP < 0.5	97.8%	97.4%
Preshower Ratio > 4.5	85.7%	83.5%
Second Preshower nMIP >10	98.6%	82.3%
Calo $E > 1.5 \text{ TeV}$	91.6%	75.4%

Backgrounds

Backgrounds

Magnet	region	Presh	ower region	1	
Light	$33.6^{+6.7}_{-3.4}$ (flux) ± 4.3 (exp.) ± 0.4 (stat.)	ν_e	5.16 ± 2.59 (flux) ± 0.51 (exp.) ± 0.17 (stat.)		
Charm	$9.9^{+16.1}_{-4.6}$ (flux) ± 0.9 (exp.) ± 0.2 (stat.)	ν_{μ}	12.6 ± 2.3 (flux) ± 1.61 (exp.) ± 0.3 (stat.)		
Total	$43.5\pm18.2(41.9\%)$	Total	$17.8 \pm 5.1 \; (28.8\%)$		
Data	34	Data	15	SR	
"Other"	' region	Calori	imeter region	ν_e	0.32 ± 0.31 (flux) ± 0.10 (exp.) ± 0.04 (stat.)
Light	$17.4^{+1.3}_{-0.8}$ (flux) ± 2.5 (exp.) ± 0.3 (stat.)	ν_e	$22.6 \pm 12.8 \text{ (flux)} \pm 0.7 \text{ (exp.)} \pm 0.4 \text{ (stat.)}$	ν_{μ}	0.09 ± 0.04 (flux) ± 0.05 (exp.) ± 0.02 (stat.)
Charm	$3.9^{+6.0}_{-1.8}$ (flux) ± 0.5 (exp.) ± 0.2 (stat.)	ν_{μ}	$39.9 \pm 6.8 \text{ (flux)} \pm 2.8 \text{ (exp.)} \pm 0.5 \text{ (stat.)}$	Total	$0.42 \pm 0.38 \; (\mathbf{90.6\%})$
Total	$21.3 \pm 6.9 (\mathbf{32.2\%})$	Total	$62.7 \pm 19.7 \; (31.4\%)$	Data	1
Data	17	Data	74		
Calorin	neter region	Magn	et region	1	> 1.5 TeV signal region
Light	$51.6^{+2.0}_{-3.4}$ (flux) ± 3.1 (exp.) ± 0.5 (stat.)	ν_e	$13.8 \pm 10.3 \text{ (flux)} \pm 1.4 \text{ (exp.)} \pm 0.3 \text{ (stat.)}$	Ligh	t $0.23^{\pm0.01}$ (flux) ± 0.11 (exp.) ± 0.04 (stat.)
Charm	$11.1^{+19.1}_{-5.1}$ (flux) ± 0.4 (exp.) ± 0.3 (stat.)	ν_{μ}	$29.4 \pm 8.0 \text{ (flux)} \pm 3.8 \text{ (exp.)} \pm 0.4 \text{ (stat.)}$	Char	$0.10^{+0.32} (flux) \pm 0.06 (evp.) \pm 0.03 (stat.)$
Total	$62.7\pm19.7(31.4\%)$	Total	$43.5 \pm 18.2 \; (\mathbf{41.9\%})$	Toto	$0.13_{-0.09} (hux) \pm 0.00 (exp.) \pm 0.03 (stat.)$
Data	74	Data	34		$\begin{array}{c} 1 \\ 0.42 \pm 0.38 \\ (90.070) \end{array}$
Preshow	ver region	"Othe	er" region		
Light	$14.8^{+0.9}_{-1.2}$ (flux) ± 1.8 (exp.) ± 0.3 (stat.)	ν_e	$6.3 \pm 3.6 \text{ (flux)} \pm 0.8 \text{ (exp.)} \pm 0.19 \text{ (stat.)}$		
Charm	$3.0^{+4.5}_{-1.4}$ (flux) ± 0.3 (exp.) ± 0.1 (stat.)	ν_{μ}	$14.9 \pm 2.7 \text{ (flux)} \pm 2.2 \text{ (exp.)} \pm 0.3 \text{ (stat.)}$		
Total	$17.8\pm5.1(28.8\%)$	Total	$21.3 \pm 6.9 (\mathbf{32.2\%})$		
Data	15	Data	17		

Systematics

Signal Sample	Flux	Stat.	Luminosity	Calorimeter	Second Preshower Layer	Preshower Ratio
$m_a = 140 \text{ MeV}$ $g_{aWW} = 2 \times 10^{-4} \text{ GeV}^{-1}$	59.4%	1.8%	2.2%	3.6%	0.6%	7.9%
$m_a = 120 \text{ MeV} g_{aWW} = 10^{-4} \text{ GeV}^{-1}$	57. <mark>3</mark> %	3.5%	2.2%	16.3%	0.6%	6.9%
$\begin{aligned} m_a &= 300 \ \mathrm{MeV} \\ g_{aWW} &= 2 \times 10^{-5} \ \mathrm{GeV^{-1}} \end{aligned}$	58.0%	2.9%	2.2%	15.8%	0.6%	8.4%

Source	Event Rate
	$0.42 ~\pm~ 0.32 ~({ m flux})$
	\pm 0.14 (calo. energy)
Noutring Packground	\pm 0.06 (PS ratio)
Neutrino Background	\pm 0.02 (PS 1 nMIP)
	\pm 0.05 (stat.)
	Total: $0.42 \pm 0.38 (90.6\%)$
ALP $(m_a = 140 \text{ MeV}, g_{aWW} = 2 \times 10^{-4} \text{ GeV}^{-1})$	70.7 ± 42.0 (theo.) ± 6.4 (exp.) ± 1.3 (stat.)
ALP $(m_a = 120 \text{ MeV}, g_{aWW} = 1 \times 10^{-4} \text{ GeV}^{-1})$	91.1 ± 52.2 (theo.) ± 16.2 (exp.) ± 3.2 (stat.)
ALP $(m_a = 300 \text{ MeV}, g_{aWW} = 2 \times 10^{-5} \text{ GeV}^{-1})$	4.0 ± 2.3 (theo.) ± 0.6 (exp.) ± 0.1 (stat.)
Data	1

Unblinded results

m_a [MeV]

"ALPtrino" event

→ Event display of single event observed in the SR

- Calorimeter energy of 1.6 TeV
- Pre-shower deposits consistent with EM shower

Scintillator	2022	2023
Veto-0	99.999988(5)	99.999994(4)
Veto-1	99.999992(5)	99.999994(4)
Veto-2	99.999992(5)	99.999994(4)
NuVeto-0	99.99989(1)	99.99988(1)
NuVeto-1	99.99988(1)	99.99986(1)

Multi-photon models

- → ALP-photon
 - <u>Production</u>: Primakoff process
 - <u>Decay</u>: үү
- → ALP-gluon
 - <u>Production</u>: α mixing with π^0 , η and η'
 - Decay: $\gamma\gamma$ (low masses), 3π and $\pi^+\pi^-\gamma$ (ma ~ 0.5 GeV)

→ U(1)_B gauge boson

- <u>Production</u>: π^0 , η and η' decays, dark bremsstrahlung
- <u>Decay</u>: ee (m_{ZB} < m_{π0}), π⁰γ, π⁰π⁺π⁻ (m_{ZB} ~ 600 MeV)

→ Up-philic scalar

- <u>Production</u>: mainly η and η ' decays, also FCNC kaon decays $\mathcal{L} = -\frac{1}{2}m_S^2 S^2 g_u \bar{u} u S$
- <u>Decay</u>: $\gamma \gamma (m_s < 2m_{\pi 0}), \pi^0 \pi^0 (m_s > 2m_{\pi 0})$

$$\mathcal{L} = -\frac{1}{2} m_a{}^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

$$\mathcal{L} = -\frac{1}{2} \frac{m_a}{2} a^2 - \frac{g_s^2}{8} g_{agg} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

$$\mathcal{L} = \frac{1}{2} m_{Z_B}^2 Z_B^2 - g_B \sum x_f \ \bar{f} \gamma^\mu f X_\mu$$

Run 4

Preshower upgrade

Discovery Potential

101 members from 27 institutions and 11 countries

Acknowledgements

