Snehashis Parashar

IIT Hyderabad

July 20, 2024

(On behalf of Chandrima Sen∗, IIT Hyderabad)

Collaborators: C. Sen, P. Bandyopadhyay, E. J. Chun, S. Dutta, M. Frank, Aleesha K T Based on: JHEP 02 (2023) 103, Eur.Phys.J.C 82 (2022) 3, 230, JHEP 03 (2024) 109

[∗] ph19resch11014@iith.ac.in

Introduction to Long-Lived Particles

- Despite being massively successful, the Standard Model (SM) leaves much to be desired, including explanations for Dark Matter (DM), neutrino mass, and many more.
- No conclusive evidence for new particles Beyond the SM yet: with searches for prompt physics objects.
- Long-lived particles (LLP) may open new avenues for BSM searches.

Introduction to Long-Lived Particles

- Despite being massively successful, the Standard Model (SM) leaves much to be desired, including explanations for Dark Matter (DM), neutrino mass, and many more.
- No conclusive evidence for new particles Beyond the SM yet: with searches for prompt physics objects.
- Long-lived particles (LLP) may open new avenues for BSM searches.

- \blacksquare Production vertex is different from the decay vertex.
- $\frac{1}{\tau} = \Gamma \propto g^2 |\mathcal{M}|^2 \Phi$, which can be small due to:
	- small couplings
	- **heavy intermediary particles**
	- limited phase space due to compressed spectrum

LLP signatures: what and where to look for?

[https://tikz.net/bsm_longlived]

- **Most signatures can be detected in the** existing/conventional detectors like CMS and ATLAS.
- For longer lifetimes, dedicated detectors like MATHUSLA and FASER can be handy.

[Alpigiani et al, 2009.01693 [physics.ins-det]]

We will deal with three different Fermionic LLP scenarios in this talk.

For a scalar LLP analysis, you are welcome to check out the poster stand 029 (Indico Contribution ID 108)

Type-I Seesaw + $U(1)_{B-L}$ extension of SM

Apart from the SM particles we consider,

- three RHNs $\left(N_{R_{\,i}}\right)$ to cancel the $B-L$ gauge anomaly,
- one $U(1)_{B-L}$ gauge boson Z_{B-L} ,
- one SM singlet $B L$ charged complex scalar χ .

Important terms in Yukawa Lagrangian:

 $B - L$ charge for all the particles in the model:

$$
\mathcal{L}_Y \supset - \underbrace{(Y_N)_{ij} \ \overline{L}_i \ \tilde{\Phi}(N_R)_j}_{\text{Dirac mass term}} - \underbrace{(\lambda_N)_{ij} \ \chi(\overline{N_R})_i^C \ (N_R)_j}_{\text{Majorana mass term}}.
$$

Dirac mass term

P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103

Type-I Seesaw + $U(1)_{B-L}$ extension of SM

Apart from the SM particles we consider,

- three RHNs $\left(N_{R_{\,i}}\right)$ to cancel the $B-L$ gauge anomaly,
- one $U(1)_{B-L}$ gauge boson Z_{B-L} ,
- one SM singlet $B L$ charged complex scalar χ .

Important terms in Yukawa Lagrangian:

$$
\begin{array}{|c|c|c|c|c|c|}\n\hline\nB-L & 0 & 1/3 & -1 \\
\hline\n\end{array}
$$

$$
\mathcal{L}_Y \supset - \underbrace{(Y_N)_{ij} \ \overline{L}_i \ \tilde{\Phi}(N_R)_j}_{\text{Dirac mass term}} - \underbrace{(\lambda_N)_{ij} \ \chi(\overline{N_R})^C_i \ (N_R)_j}_{\text{Majorana mass term}}.
$$

■ Mass of the Z_{B-L} is generated due to spontaneous symmetry breaking of the $B-L$ gauge symmetry:

$$
M_{Z_{B-L}} = 2g_{BL}v_{BL}, \qquad \text{where, } <\chi>=\frac{v_{BL}}{\sqrt{2}}
$$

■ Majorana masses of RHNs can also be generated spontaneously via the breaking of $U(1)_{B-L}$ gauge symmetry:

$$
M_N = \lambda_N \frac{v_{BL}}{\sqrt{2}}
$$

Light SM neutrino masses are generated by Type-I seesaw mechanism when Φ **gets vev:**

$$
m_\nu = \frac{Y_N^2 v^2}{2M_N}, \qquad \qquad \text{where,}\quad <\Phi> = \frac{v}{\sqrt{2}}
$$

 $B - L$ charge for all the particles in the model:

P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103

Collider Signatures: Type-I Seesaw in $B - L$ Scenario

RHN can be pair produced via Z_{B-L} gauge boson in Drell-Yan process.

RHNs decay through $Z\nu$, $h\nu$ and $W^{\pm}\ell^{\mp}$, with the decay widths, $\Gamma_N^{Z\nu}\approxeq\Gamma_N^{h\nu}\approxeq\frac{1}{2}\Gamma_N^{W\ell}\approxeq\frac{Y_N^2\,M_N}{64\pi}$

- Rest mass decay length contours in meter unit.
- **Boost effect can enhance** the decay length as, $L_{\tau} = c\tau\beta\gamma = \frac{\tau p}{m}$
- Decay vertex position with the boost effect: $v' = v + \frac{\tau p}{m}.$

[[]P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103]

Collider Signatures: Type-I Seesaw in $B - L$ Scenario

RHN can be pair produced via Z_{B-L} gauge boson in Drell-Yan process.

RHNs decay through $Z\nu$, $h\nu$ and $W^{\pm}\ell^{\mp}$, with the decay widths, $\Gamma_N^{Z\nu}\approxeq\Gamma_N^{h\nu}\approxeq\frac{1}{2}\Gamma_N^{W\ell}\approxeq\frac{Y_N^2\,M_N}{64\pi}$

- Rest mass decay length contours in meter unit.
- **Boost effect can enhance** the decay length as, $L_{\tau} = c\tau\beta\gamma = \frac{\tau p}{m}$
- Decay vertex position with the boost effect: $v' = v + \frac{\tau p}{m}.$

- Most dominant final states come from the $N \to W^{\pm} \ell^{\mp}$ mode.
- For lower masses and higher boost, W -jets are collimated to one (fat) jet.
- **Lower masses:** $2\ell + 2j$ (also contributed from $N \rightarrow Z\nu$). Higher masses: $2\ell + 4j$.
- All these decay products are displaced.

[[]P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103]

Collider reach of the Type-I displaced decay parameter space

Reach plots for 14 TeV LHC

Reach plots for 100 TeV FCC-hh

P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103

Successive Displaced Decays in Type-III Seesaw

r

The
$$
SU(2)
$$
 triplet fermion, $N_R = \begin{pmatrix} N^0 & \sqrt{2}N^+ \\ \sqrt{2}N^- & -N^0 \end{pmatrix}$, with zero hypercharge is added with the SM.

The Lagrangian corresponding to the triplet fermion is:

$$
\mathcal{L}_{N_R} = \text{Tr}(\overline{N_R} \mathcal{B} N_R) - \frac{1}{4} M_N \text{ Tr} \left[\overline{N_R} N_R \right] - Y_N \left(\tilde{\phi}^{\dagger} \overline{N_R} L + \overline{L} N_R \tilde{\phi} \right).
$$

Heavy charged fermion (N^{\pm}) decays to $Z\ell^{\pm}$, $h\ell^{\pm}$ and $W^{\pm} \nu$, with the decay widths,

$$
\Gamma_{N^\pm}^{Z\ell} \approxeq \Gamma_{N^\pm}^{h\ell} \approxeq \frac{1}{2} \Gamma_{N^\pm}^{W\nu} \approxeq \frac{Y_N^2 \, M_N}{32\pi}.
$$

Another decay mode is dominant for lower Yukawa: $\Gamma(N^{\pm} \to N^0 \pi^{\pm}) = \frac{2G_F^2 V_{ud}^2 \Delta M^3 f_{\pi}^2}{\pi} \sqrt{\frac{2}{\pi}}$ $1-\frac{m_{\pi}^2}{\Delta M^2}$ [Cirelli et al, Nucl. Phys. B 753 (2006) 178-194]

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230 7 / 20

Successive Displaced Decays in Type-III Seesaw

Г

The
$$
SU(2)
$$
 triplet fermion, $N_R = \begin{pmatrix} N^0 & \sqrt{2}N^+ \\ \sqrt{2}N^- & -N^0 \end{pmatrix}$, with zero hypercharge is added with the SM.

The Lagrangian corresponding to the triplet fermion is:

$$
\mathcal{L}_{N_R} = \text{Tr}(\overline{N_R} \mathcal{B} N_R) - \frac{1}{4} M_N \text{ Tr} \left[\overline{N_R} N_R \right] - Y_N \left(\tilde{\phi}^{\dagger} \overline{N_R} L + \overline{L} N_R \tilde{\phi} \right).
$$

Heavy charged fermion (N^{\pm}) decays to $Z\ell^{\pm}$, $h\ell^{\pm}$ and $W^{\pm} \nu$, with the decay widths.

$$
\Gamma_{N^\pm}^{Z\ell} \approxeq \Gamma_{N^\pm}^{h\ell} \approxeq \frac{1}{2} \Gamma_{N^\pm}^{W\nu} \approxeq \frac{Y_N^2 \, M_N}{32\pi}.
$$

- Another decay mode is dominant for lower Yukawa: $\Gamma(N^{\pm} \to N^0 \pi^{\pm}) = \frac{2G_F^2 V_{ud}^2 \Delta M^3 f_{\pi}^2}{\pi} \sqrt{\frac{2}{\pi}}$ $1-\frac{m_{\pi}^2}{\Delta M^2}$ [Cirelli et al, Nucl. Phys. B 753 (2006) 178-194]
- First recoil: Decay length of N^{\pm} is $\mathcal{O}(5)$ cm.
- Second recoil: Decay length of N^0 depends on Y_N .

A displaced double recoil is predicted.

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230 7 / 20

Collider Reach for Displaced Higgs boson

- Decay length increases due to the boost effect as the centre-of-mass energy increases from LHC @14 TeV to FCC-hh @100 TeV.
- Boost effect is more in the longitudinal direction compared to the transverse one.

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230

Collider Reach for Displaced Higgs boson

- Decay length increases due to the boost effect as the centre-of-mass energy increases from LHC @14 TeV to FCC-hh @100 TeV.
- Boost effect is more in the longitudinal direction compared to the transverse one.

- The regions contain at least one displaced Higgs boson reconstructed from di-b-jet invariant mass.
- Yukawa couplings $\gtrsim 10^{-9}$ is out of the reach of MATHUSLA.

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230

Extension with Non-zero Hyper-charged $SU(2)$ Triplet Fermions

- Cannot write a Majorana mass term for $Y = -1$ triplet fermion: hence, assigned vector-like.
- \blacksquare For the vector-like fermions, the left- and right- handed components transforms the same way, making the mass term invariant, independent of the Higgs field.

Scalar potential:

$$
V_{\text{scalar}} = -m_{\Phi_1}^2 \Phi_1^{\dagger} \Phi_1 - m_{\Phi_2}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c]
$$

 \blacksquare \mathbb{Z}_2 odd scalar doublet couples with VLL as

$$
\mathcal{L}_{VLL} \supset \left[-\frac{M_N}{2} \overline{N_L} N_R + \mathcal{Y}_N \overline{L_L^e} N_R \Phi_2 \right] + h.c.
$$

Non-Majorana with $Y \neq 0$: N^0 couples to Z boson, which forbids fermionic and multi-component DM, owing to large DM-neucleon cross-sections.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Interplay between IDM and VLL and Boltzmann equations

Convention: Sector 0: SM particles; Sector 1: IDM $[A^0, H^0, H^{\pm}]$; Sector 2: Inert VLL $[N^0, N^{\pm}, N^{\pm\pm}]$

Pair-annihilation
\n
$$
A^{0} \longrightarrow W^{+/Z}
$$
\n
$$
A^{0} \longrightarrow W^{+/Z}
$$
\n
$$
A^{0} \longrightarrow W^{+}
$$
\n
$$
A^{0} \longrightarrow W^{+
$$

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Interplay between IDM and VLL

Consider the following mass spectrum for the study of interplay:

- The yield of A^0 suffers a dip for more co-annihilation due to compressed spectra.
- Number density of A^0 increases when N decays off completely.
- **Pure Inert doublet scalar shows overabundant, but the** interplay (co-annihilation and decay) of N sector can bring back the DM yield in correct ballpark.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11 / 20 11

Interplay between IDM and VLL

Consider the following mass spectrum for the study of interplay:

- The yield of A^0 suffers a dip for more co-annihilation due to compressed spectra.
- Number density of A^0 increases when N decays off completely.
- **Pure Inert doublet scalar shows overabundant, but the** interplay (co-annihilation and decay) of N sector can bring back the DM yield in correct ballpark.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109 11 11 120 11 120

- **Lower the Yukawa couplings: less co-annihilation** $+$ very late decay of the fermions.
- Higher the mass splitting: less phase space for co-annihilation, that leads to overabundance of DM number density.

Collider Signatures: Displaced decay of $N^{\pm\pm}$

■ The decay width of $N^{\pm \pm}$:

$$
\Gamma_{N^{\pm\pm}\to H^\pm\ell^\pm} = \frac{\mathcal{Y}_N^2 M_{N^{\pm\pm}}}{32\pi} \left(1-\frac{M_{H^\pm}^2}{M_{N^{\pm\pm}}^2}\right)^2.
$$

- Small \mathcal{Y}_N and compressed mass spectrum lead to small decay width \implies larger decay length.
- Hadronically quiet, displaced multi-lepton final states, with leptons as soft as > 5 GeV.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Collider Signatures: Displaced decay of $N^{\pm\pm}$

- $M_{N^{\pm \pm}} = 1012$ GeV and the corresponding Yukawa coupling $\mathcal{Y}_N = 5.4 \times 10^{-7}$.
	- Total decay width: $\Gamma_{\text{tot}} = 1.34 \times 10^{-15}$ GeV.
	- Rest mass decay length: $c\tau_0 = 15$ cm
- Boost effect enhances the decay length; the maximum reach is around 10 m in a 100 TeV FCC-hh.

■ The decay width of $N^{\pm \pm}$:

$$
\Gamma_{N^{\pm\pm}\to H^\pm\ell^\pm} = \frac{\mathcal{Y}_N^2 M_{N^{\pm\pm}}}{32\pi} \left(1-\frac{M_{H^\pm}^2}{M_{N^{\pm\pm}}^2}\right)^2.
$$

- Small \mathcal{Y}_N and compressed mass spectrum lead to small decay width \implies larger decay length.
- Hadronically quiet, displaced multi-lepton final states, with leptons as soft as $>$ 5 GeV.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Conclusions

Displaced decays can be used as non-standard searches to probe new physics scenarios.

- Displace decays of neutral fermions, i.e. $\,N^0$ in case of Type-I Seesaw, and charged fermions in case of Type-III Seesawand VLL can probe the models for the unexplored territory.
- **Lower Yukawa couplings and compressed mass spectrum can alter the DM phenomenology** as well as can give displaced final state signatures at the colliders.
- Two successive displacements (double recoil) can be observed for triplet extension of SM in case of lower Yukawa couplings $(Y_N\lesssim 10^{-8}).$
- \bullet $\mathcal{O}(100)$ m decay lengths can be probed inside MATHUSLA detector.

Backup Slides

One generation of RHN with low Yukawa

From the neutrino oscillation data.

$$
\Delta m^2_{21} = m_2^2 - m_1^2 \approx 7.42 \times 10^{-5} \, \mathrm{eV^2}
$$

Suppose for one generation of RHN (N_1) , the Yukawa coupling is very small, i.e. $Y_{N_1} = 5 \times 10^{-10}$. Hence, the SM neutrino mass,

$$
m_1 = \frac{Y_{N_1}^2 v^2}{2M_{N_1}} = 7.56 \times 10^{-9} \, \mathrm{eV}, \qquad \text{if,} \mathrm{M_{N_1}} = 1 \, \mathrm{TeV}
$$

This makes, $m_2 = 8.6 \times 10^{-3}$ eV. The corresponding Yukawa coupling, $Y_{N_2} = 7.5 \times 10^{-7}$, which fails to give displaced signature.

Similarly from $\Delta m_{31}^2 = m_3^2 - m_1^2 \approx 2.51 \times 10^{-3} \text{ eV}^2$, one can calculate $Y_{N_3} = 1.3 \times 10^{-6}$.

Displaced decay of RHNs

 $M_{Z_{B-L}}$ bound

Benchmarks for IDM+VLL

- All of the benchmark points are satisfied by correct relic abundance, direct and indirect detection constraints.
- All of them lead to displaced decays of the VLLs.

Displaced Decay of N^{\pm} in IDM+VLL

The decay width and rest mass decay length off $N^{\pm \pm}$ for three benchmark points:

	RP1		B _{P2}		BP3	
$N^{\pm \pm}$	$\mathcal{Y}_N = 4.2 \times 10^{-9}$		$\mathcal{Y}_N = 1.1 \times 10^{-7}$		${\cal Y}_N = 5.4 \times 10^{-7}$	
	$\Gamma_{\rm tot}$ (GeV)	$c\tau_0$ (m)	$\Gamma_{\rm tot}$ (GeV)	$c\tau_0$ (m)	$\Gamma_{\rm tot}$ (GeV)	$c\tau_0$ (m)
	1.27×10^{-18}	155.42	5.92×10^{-17}	3.33	1.34×10^{-15}	0.15

The decay length distribution considering the boost effect:

BP1: β not low enough to be an HSCP. comparatively harder leptons. May reach MATHUSLA.

- BP2: β in the HSCP region, a comparative study in detail can be done.
- **BP3:** Too heavy, decays before ECal.