Snehashis Parashar

IIT Hyderabad

July 20, 2024

(On behalf of Chandrima Sen*, IIT Hyderabad)

Collaborators: C. Sen, P. Bandyopadhyay, E. J. Chun, S. Dutta, M. Frank, Aleesha K T Based on: JHEP 02 (2023) 103, Eur.Phys.J.C 82 (2022) 3, 230, JHEP 03 (2024) 109

* ph19resch11014@iith.ac.in

Introduction to Long-Lived Particles

- Despite being massively successful, the Standard Model (SM) leaves much to be desired, including explanations for Dark Matter (DM), neutrino mass, and many more.
- No conclusive evidence for new particles Beyond the SM yet: with searches for prompt physics objects.
- Long-lived particles (LLP) may open new avenues for BSM searches.

Introduction to Long-Lived Particles

- Despite being massively successful, the Standard Model (SM) leaves much to be desired, including explanations for Dark Matter (DM), neutrino mass, and many more.
- No conclusive evidence for new particles Beyond the SM yet: with searches for prompt physics objects.
- Long-lived particles (LLP) may open new avenues for BSM searches.

- Production vertex is different from the decay vertex.
- $\frac{1}{ au} = \Gamma \propto g^2 |\mathcal{M}|^2 \Phi$, which can be small due to:
 - small couplings
 - heavy intermediary particles
 - limited phase space due to compressed spectrum

LLP signatures: what and where to look for?

- Most signatures can be detected in the existing/conventional detectors like CMS and ATLAS.
- For longer lifetimes, dedicated detectors like MATHUSLA and FASER can be handy.

[Alpigiani et al, 2009.01693 [physics.ins-det]]

We will deal with three different Fermionic LLP scenarios in this talk.

For a scalar LLP analysis, you are welcome to check out the poster stand 029 (Indico Contribution ID 108)

Type-I Seesaw + $U(1)_{B-L}$ extension of SM

Apart from the SM particles we consider,

- three RHNs (N_{R_i}) to cancel the B L gauge anomaly,
- one $U(1)_{B-L}$ gauge boson Z_{B-L} ,
- one SM singlet B L charged complex scalar χ ,

Important terms in Yukawa Lagrangian:

B-L charge for all the particles in the model:

	Φ	Q	L	u_R, d_R	e_R	N_{R_i}	χ
B-L	0	1/3	-1	1/3	1	-1	2

$$\mathcal{L}_Y \supset -\underbrace{(Y_N)_{ij} \overline{L}_i \,\tilde{\Phi}(N_R)_j}_{\text{Dirac parts term}} -\underbrace{(\lambda_N)_{ij} \,\chi(\overline{N_R})_i^C \,(N_R)_j}_{\text{Mairyon mass term}}.$$

Majorana mass term

P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103

Type-I Seesaw + $U(1)_{B-L}$ extension of SM

Apart from the SM particles we consider,

- three RHNs (N_{R_i}) to cancel the B L gauge anomaly,
- one $U(1)_{B-L}$ gauge boson Z_{B-L} ,
- one SM singlet B L charged complex scalar χ ,

Important terms in Yukawa Lagrangian:

$$\mathcal{L}_{Y} \supset -\underbrace{(Y_{N})_{ij} \overline{L}_{i} \tilde{\Phi}(N_{R})_{j}}_{\text{Dirac mass term}} -\underbrace{(\lambda_{N})_{ij} \chi(\overline{N_{R}})_{i}^{C}(N_{R})_{j}}_{\text{Majorana mass term}}$$

• Mass of the Z_{B-L} is generated due to spontaneous symmetry breaking of the B-L gauge symmetry:

$$M_{Z_{B-L}} = 2g_{BL}v_{BL},$$
 where, $<\chi>=rac{v_{BL}}{\sqrt{2}}$

• Majorana masses of RHNs can also be generated spontaneously via the breaking of $U(1)_{B-L}$ gauge symmetry:

$$M_N = \lambda_N \frac{v_{BL}}{\sqrt{2}}$$

 \blacksquare Light SM neutrino masses are generated by Type-I seesaw mechanism when Φ gets vev:

$$m_{\nu}=\frac{Y_N^2 v^2}{2M_N}, \qquad \qquad \text{where,} \quad <\Phi>=\frac{v}{\sqrt{2}}$$

B-L charge for all the particles in the model:

	Φ	Q	L	u_R, d_R	e_R	N_{R_i}	χ
B-L	0	1/3	-1	1/3	1	-1	2

P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103

Collider Signatures: Type-I Seesaw in B - L Scenario

RHN can be pair produced via Z_{B-L} gauge boson in Drell-Yan process.

RHNs decay through $Z\nu$, $h\nu$ and $W^{\pm}\ell^{\mp}$, with the decay widths, $\Gamma_N^{Z\nu} \cong \Gamma_N^{h\nu} \cong \frac{1}{2}\Gamma_N^{W\ell} \cong \frac{Y_N^2 M_N}{64\pi}$

- Rest mass decay length contours in meter unit.
- Boost effect can enhance the decay length as, $L_{\tau} = c\tau\beta\gamma = \frac{\tau p}{m}$
- Decay vertex position with the boost effect: $v' = v + \frac{\tau p}{m}$.

[[]P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103]

Collider Signatures: Type-I Seesaw in B - L Scenario

 RHN can be pair produced via Z_{B-L} gauge boson in Drell-Yan process.

RHNs decay through $Z\nu$, $h\nu$ and $W^{\pm}\ell^{\mp}$, with the decay widths, $\Gamma_N^{Z\nu} \cong \Gamma_N^{h\nu} \cong \frac{1}{2}\Gamma_N^{W\ell} \cong \frac{Y_N^2 M_N}{64\pi}$

- Rest mass decay length contours in meter unit.
- Boost effect can enhance the decay length as, $L_{\tau} = c\tau\beta\gamma = \frac{\tau p}{m}$
- Decay vertex position with the boost effect: $v' = v + \frac{\tau p}{m}$.

- Most dominant final states come from the $N \to W^{\pm} \ell^{\mp}$ mode.
- For lower masses and higher boost, W-jets are collimated to one (fat) jet.
- Lower masses: $2\ell + 2j$ (also contributed from $N \to Z\nu$). Higher masses: $2\ell + 4j$.
- All these decay products are displaced.

[[]P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103]

Collider reach of the Type-I displaced decay parameter space

Reach plots for 14 TeV LHC

Reach plots for 100 TeV FCC-hh

P. Bandyopadhyay, E. J. Chun, C. Sen; JHEP 02 (2023) 103

Successive Displaced Decays in Type-III Seesaw

П

The
$$SU(2)$$
 triplet fermion, $N_R=egin{pmatrix}N^0&\sqrt{2}N^+\\\sqrt{2}N^-&-N^0\end{pmatrix}$, with zero hypercharge is added with the SM.

The Lagrangian corresponding to the triplet fermion is:

Heavy charged fermion (N^{\pm}) decays to $Z\ell^{\pm}$, $h\ell^{\pm}$ and $W^{\pm}\nu$, with the decay widths,

$$\Gamma_{N^{\pm}}^{Z\ell} \cong \Gamma_{N^{\pm}}^{h\ell} \cong \frac{1}{2} \Gamma_{N^{\pm}}^{W\nu} \cong \frac{Y_N^2 M_N}{32\pi}.$$

• Another decay mode is dominant for lower Yukawa: $\Gamma(N^{\pm} \rightarrow N^{0}\pi^{\pm}) = \frac{2G_{F}^{2}V_{ud}^{2}\Delta M^{3}f_{\pi}^{2}}{\pi}\sqrt{1 - \frac{m_{\pi}^{2}}{\Delta M^{2}}}$ [Cirelli et al, Nucl. Phys. B 753 (2006) 178-194]

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230

Successive Displaced Decays in Type-III Seesaw

The
$$SU(2)$$
 triplet fermion, $N_R=egin{pmatrix}N^0&\sqrt{2}N^+\\\sqrt{2}N^-&-N^0\end{pmatrix}$, with zero hypercharge is added with the SM.

The Lagrangian corresponding to the triplet fermion is:

• Heavy charged fermion (N^{\pm}) decays to $Z\ell^{\pm}$, $h\ell^{\pm}$ and $W^{\pm}\nu$, with the decay widths,

$$\Gamma_{N^{\pm}}^{Z\ell} \cong \Gamma_{N^{\pm}}^{h\ell} \cong \frac{1}{2} \Gamma_{N^{\pm}}^{W\nu} \cong \frac{Y_N^2 M_N}{32\pi}.$$

- Another decay mode is dominant for lower Yukawa: $\Gamma(N^{\pm} \rightarrow N^{0}\pi^{\pm}) = \frac{2G_{F}^{2}V_{ud}^{2}\Delta M^{3}f_{\pi}^{2}}{\pi}\sqrt{1 - \frac{m_{\pi}^{2}}{\Delta M^{2}}}$ [Cirelli et al, Nucl. Phys. B 753 (2006) 178-194]
- First recoil: Decay length of N^{\pm} is $\mathcal{O}(5)$ cm.
- Second recoil: Decay length of N^0 depends on Y_N .

A displaced double recoil is predicted.

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230

Collider Reach for Displaced Higgs boson

- Decay length increases due to the boost effect as the centre-of-mass energy increases from LHC @14 TeV to FCC-hh @100 TeV.
- Boost effect is more in the longitudinal direction compared to the transverse one.

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230

Collider Reach for Displaced Higgs boson

- Decay length increases due to the boost effect as the centre-of-mass energy increases from LHC @14 TeV to FCC-hh @100 TeV.
- Boost effect is more in the longitudinal direction compared to the transverse one.

- The regions contain at least one displaced Higgs boson reconstructed from di-b-jet invariant mass.
- \blacksquare Yukawa couplings $\gtrsim 10^{-9}$ is out of the reach of MATHUSLA.

C. Sen, P. Bandyopadhyay, S. Dutta, Aleesha KT; Eur.Phys.J.C 82 (2022) 3, 230

Extension with Non-zero Hyper-charged SU(2) Triplet Fermions

Description	Field definition	Gauge charges					
Description	Tield demittion	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	Z_2		
Vectorlike lepton (VLL)	$N = \begin{pmatrix} \frac{N^{-}}{\sqrt{2}} & N^{0} \\ N^{} & -\frac{N^{-}}{\sqrt{2}} \end{pmatrix}$	1	3	-1	_		
Scalars	$\Phi_1 = (\phi_1^+ \ \phi_1^0)^T$	1	2	1/2	+		
	$\Phi_2 = (\phi_2^+ \ \phi_2^0)^T$	1	2	1/2	_		

- Cannot write a Majorana mass term for Y = -1 triplet fermion: hence, assigned vector-like.
- For the vector-like fermions, the left- and right- handed components transforms the same way, making the mass term invariant, independent of the Higgs field.

Scalar potential:

$$\begin{split} V_{\text{scalar}} &= -m_{\Phi_1}^2 \Phi_1^{\dagger} \Phi_1 - m_{\Phi_2}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c \right] \end{split}$$

 $\blacksquare \mathbb{Z}_2$ odd scalar doublet couples with VLL as

$$\mathcal{L}_{VLL} \supset \left[-\frac{M_N}{2} \overline{N_L} N_R + \mathcal{Y}_N \overline{L_L^e} N_R \Phi_2 \right] + h.c.$$

Non-Majorana with $Y \neq 0$: N^0 couples to Z boson, which forbids fermionic and multi-component DM, owing to large DM-neucleon cross-sections.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Interplay between IDM and VLL and Boltzmann equations

Convention: Sector 0: SM particles; Sector 1: IDM $[A^0, H^0, H^{\pm}]$; Sector 2: Inert VLL $[N^0, N^{\pm}, N^{\pm\pm}]$

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Interplay between IDM and VLL

Consider the following mass spectrum for the study of interplay:

M_{A^0} (GeV)	${M_{H^0}}$ (GeV)	${M_H}^\pm$ (GeV)	M_{N^0} (GeV)	M_N^- (GeV)	${M_N}_{ m OP}^{}$ (GeV)	${\mathcal Y}_N$	Ωh^2
1000.0	1010.5	1001.0	1010.5	1011.0	1011.9	5.4×10^{-7}	0.121

- The yield of A⁰ suffers a dip for more co-annihilation due to compressed spectra.
- Number density of A⁰ increases when N decays off completely.
- Pure Inert doublet scalar shows overabundant, but the interplay (co-annihilation and decay) of N sector can bring back the DM yield in correct ballpark.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Interplay between IDM and VLL

Consider the following mass spectrum for the study of interplay:

M_{A^0} (GeV)	${M_{H^0}}$ (GeV)	${M_H}^\pm$ (GeV)	M_{N^0} (GeV)	M_N^{-} (GeV)	${M_N}_{ m OP}^{}$ (GeV)	${\mathcal Y}_N$	Ωh^2
1000.0	1010.5	1001.0	1010.5	1011.0	1011.9	5.4×10^{-7}	0.121

- The yield of A⁰ suffers a dip for more co-annihilation due to compressed spectra.
- Number density of A⁰ increases when N decays off completely.
- Pure Inert doublet scalar shows overabundant, but the interplay (co-annihilation and decay) of N sector can bring back the DM yield in correct ballpark.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

- Lower the Yukawa couplings: less co-annihilation + very late decay of the fermions.
- Higher the mass splitting: less phase space for co-annihilation, that leads to overabundance of DM number density.

Collider Signatures: Displaced decay of $N^{\pm\pm}$

• The decay width of $N^{\pm\pm}$:

$$\Gamma_{N^{\pm\pm}\to H^{\pm}\ell^{\pm}} = \frac{\mathcal{Y}_N^2 M_{N^{\pm\pm}}}{32\pi} \left(1 - \frac{M_{H^{\pm}}^2}{M_{N^{\pm\pm}}^2}\right)^2$$

- Small \mathcal{Y}_N and compressed mass spectrum lead to small decay width \implies larger decay length.
- Hadronically quiet, displaced multi-lepton final states, with leptons as soft as \geq 5 GeV.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Collider Signatures: Displaced decay of $N^{\pm\pm}$

- $M_{N^{\pm\pm}} = 1012 \; {\rm GeV}$ and the corresponding Yukawa coupling ${\cal Y}_N = 5.4 \times 10^{-7}.$
 - Total decay width: $\Gamma_{tot} = 1.34 \times 10^{-15}$ GeV.
 - \blacksquare Rest mass decay length: $c\tau_0=15\,{\rm cm}$
- Boost effect enhances the decay length; the maximum reach is around 10 m in a 100 TeV FCC-hh.

• The decay width of $N^{\pm\pm}$:

$$\Gamma_{N^{\pm\pm}\to H^{\pm}\ell^{\pm}} = \frac{\mathcal{Y}_N^2 M_{N^{\pm\pm}}}{32\pi} \left(1 - \frac{M_{H^{\pm}}^2}{M_{N^{\pm\pm}}^2}\right)^2.$$

- Small \mathcal{Y}_N and compressed mass spectrum lead to small decay width \implies larger decay length.
- Hadronically quiet, displaced multi-lepton final states, with leptons as soft as \geq 5 GeV.

P. Bandyopadhyay, M. Frank, S. Parashar, C. Sen; JHEP 03 (2024) 109

Conclusions

Displaced decays can be used as non-standard searches to probe *new physics* scenarios.

- Displace decays of neutral fermions, i.e. N⁰ in case of Type-I Seesaw, and charged fermions in case of Type-III Seesawand VLL can probe the models for the unexplored territory.
- Lower Yukawa couplings and compressed mass spectrum can alter the DM phenomenology as well as can give displaced final state signatures at the colliders.
- Two successive displacements (double recoil) can be observed for triplet extension of SM in case of lower Yukawa couplings ($Y_N \lesssim 10^{-8}$).
- \blacksquare $\mathcal{O}(100)\,\mathrm{m}$ decay lengths can be probed inside MATHUSLA detector.

Backup Slides

One generation of RHN with low Yukawa

From the neutrino oscillation data,

$$\Delta m_{21}^2 = m_2^2 - m_1^2 \approx 7.42 \times 10^{-5} \, \mathrm{eV}^2$$

Suppose for one generation of RHN (N_1), the Yukawa coupling is very small, i.e. $Y_{N_1} = 5 \times 10^{-10}$. Hence, the SM neutrino mass,

$$m_1 = \frac{Y_{N_1}^2 v^2}{2M_{N_1}} = 7.56 \times 10^{-9} \,\text{eV}, \qquad \text{if,} M_{N_1} = 1 \,\text{TeV}$$

This makes, $m_2 = 8.6 \times 10^{-3} \,\text{eV}$. The corresponding Yukawa coupling, $Y_{N_2} = 7.5 \times 10^{-7}$, which fails to give displaced signature.

Similarly from $\Delta m^2_{31} = m^2_3 - m^2_1 \approx 2.51 \times 10^{-3} \, {\rm eV}^2$, one can calculate $Y_{N_3} = 1.3 \times 10^{-6}$.

Displaced decay of RHNs

 $M_{Z_{B-L}}$ bound

Benchmarks for IDM+VLL

BP	M_{A^0} (GeV)	M_{H^0} (GeV)	M_{H^\pm} (GeV)	M_{N^0} (GeV)	M_{N^-} (GeV)	$egin{array}{c} M_{N^{}}\ ({\sf GeV}) \end{array}$	${\mathcal Y}_N$
BP1	71.57	117.16	84.76	98.25	98.61	99.28	4.2×10^{-9}
BP2	587.6	589.4	588.2	595.5	595.9	596.8	$1.1 imes 10^{-7}$
BP3	1000.0	1010.5	1001.0	1010.5	1011.0	1011.9	5.4×10^{-7}

- All of the benchmark points are satisfied by correct relic abundance, direct and indirect detection constraints.
- All of them lead to displaced decays of the VLLs.

Displaced Decay of $N^{\pm}\pm$ in IDM+VLL

• The decay width and rest mass decay length off $N^{\pm\pm}$ for three benchmark points:

	BP1		BP2		BP3		
	$\mathcal{Y}_N = 4.2 \times$	(10^{-9})	$\mathcal{Y}_N = 1.1 imes$	(10^{-7})	$\mathcal{Y}_N = 5.4 \times 10^{-7}$		
$N^{\pm\pm}$	Γ_{tot} (GeV)	$c au_0$ (m)	Γ_{tot} (GeV)	$c au_0$ (m)	Γ_{tot} (GeV)	$c au_0$ (m)	
	1.27×10^{-18}	155.42	5.92×10^{-17}	3.33	1.34×10^{-15}	0.15	

• The decay length distribution considering the boost effect:

BP1: β not low enough to be an HSCP. comparatively harder leptons. May reach MATHUSLA.

- BP2: β in the HSCP region, a comparative study in detail can be done.
- BP3: Too heavy, decays before ECal.