

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

BSM Search Potential at CEPC Xuai Zhuang (IHEP)

zhuangxa@ihep.ac.cn

ICHEP 2024, Prague, Czech Republic

Jul. 17-24, 2024

CEPC BSM Physics Program

1. Exotic Higgs/Z/top decays

Higgs exotic decay motivated by a large class of BSM physics, such as singlet extensions, two Higgs-doublet-models (2HDM), SUSY models, Higgs portals, gauge extensions of the SM ...

Representative topologies of the Higgs exotic decays

Exotic Z or top decays are also motivated by many BSM models (ED, Heavy Vector Triplet, ...) and can also be searched at CEPC

Light Higgs are motivated by 2HDM and Axion-like particle models, which can be searched at CEPC well if they exist.

Exotic Higgs/Z/top decays

95% C.L. upper limit on selected Higgs Exotic Decay BR

The 95% C.L. upper limit on selected Higgs exotic decay BR

The reach for the branching ratio of various exotic Z decay modes

\rightarrow Good sensitivity of exotic Higgs/Z decay from CEPC

Light Higgs

Light Higgs are motivated by 2HDM and Axion-like particle models

S2HDM parameter points passing the applied constraints for the di-photon signal strengths.

Light higgs can be searched at CEPC very well if exists.

2. Dark Matter and Dark Sector

2. Dark Matter and Dark Sector

2. Dark Matter and Dark Sector

3. Long-lived particles (LLP)

Long lifetimes result from a few simple physical mechanisms:

- Small couplings (ex. RPV SUSY)
- Limited phase space: small mass splitting (ex. compressed SUSY, ...)
- Heavy intermediate states

- Higgs boson decays
- Z-boson decays
- SUSY LLP
- Vector-like leptons with scalar

→ Far Detector can help a lot!

3. LLP at Far Detector (FD)

Light Scalars from Exotic Higgs Decays

Light Neutralinos from Z Decays

104

250 GeV

 \rightarrow FD can extend and complement the sensitivity to the LLPs compared with Near Detector

4. SUSY Searches at CEPC

SUSY: establishes a symmetry between fermions and bosons, solve many big questions: unification, DM, Hierarchy,
 Complementary with LHC: lower mass/soft energy region
 ✓ Mainly light EWKino and slepton for CEPC

Lepton collider: discovery in all scenarios up to kinematic limit: \sqrt{sN}

4. SUSY Searches at CEPC

5. Flavor portal NP

- CEPC is also a flavor factory (b,c,tau) when running at Z pole, which has a unique sensitivity for some rare processes due to suppression in SM
 - The sensitivity of the flavor sector to new physics is underscored by several factors:
 - cLFV processes
 - Decays of b and c hadrons
 - Light BSM degrees of freedom from flavor transitions (cLFV or quark FCNC processes) with inv. BSM states or LLP

	Measurement	Current Limit	CEPC [272]
	${ m BR}(Z o au\mu)$	$< 6.5 \times 10^{-6}$	${\cal O}(10^{-9})$
	$BR(Z \to \tau e)$	$< 5.0 \times 10^{-6}$	${\cal O}(10^{-9})$
	${ m BR}(Z o \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$
	${ m BR}(au o \mu \mu \mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$
	${ m BR}(au ightarrow eee)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$
	${ m BR}(au o e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$
	${ m BR}(au ightarrow \mu ee)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$
	${ m BR}(au o \mu \gamma)$	$<4.4\times10^{-8}$	$\mathcal{O}(10^{-10})$
	${ m BR}(au o e \gamma)$	$< 3.3 \times 10^{-8}$	${\cal O}(10^{-10})$
	$\mathrm{BR}(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$\lesssim 1\%$ (relative)
	${\rm BR}(B^0\to K^{*0}\tau^+\tau^-)$	-	$\lesssim {\cal O}(10^{-6})$
	$BR(B_s \to \phi \tau^+ \tau^-)$	-	$\lesssim {\cal O}(10^{-6})$
	${\rm BR}(B^+\to K^+\tau^+\tau^-)$	$<2.25\times10^{-3}$	$\lesssim {\cal O}(10^{-6})$
	$BR(B_s \to \tau^+ \tau^-)$	$< 6.8 \times 10^{-3}$	$\lesssim {\cal O}(10^{-5})$
	${\rm BR}(B^0 \to 2\pi^0)$	$\pm 16\%$ (relative)	$\pm 0.25\%$ (relative)
	$C_{CP}(B^0 o 2\pi^0)$	± 0.22 (relative)	± 0.01 (relative)
	${ m BR}(B_c o au u)$	$\lesssim 30\%$	\pm 0.5% (relative)
$BR(B_c$	$J \to J/\psi au u)/\mathrm{BR}(B_c \to J/\psi \mu u)$	\pm 0.17 \pm 0.18	$\pm 2.5\%$ (relative)
${ m BR}(B_s$	$\rightarrow D_s^{(*)} \tau \nu) / \text{BR}(B_s \rightarrow D_s^{(*)} \mu \nu)$	-	$\pm 0.2\%$ (relative)
BR(/	$\Lambda_b \to \Lambda_c au u) / \mathrm{BR}(B_c \to \Lambda_c \mu u)$	± 0.076	$\pm 0.05\%$ (relative)
	${ m BR}(au o \mu X_{ m inv.})$	$7 imes 10^{-4}$	$(3-5) \times 10^{-6}$
]	$BR(B \to \mu X_{LLP}(\to \mu \mu))$	-	$\mathcal{O}(10^{-10})$ (optimal)

Preliminary sensitivities of BSM flavor physics probes at CEPC ¹³ > two orders of magnitude improv.

6. EWPT at CEPC

- The nature of Electroweak Phase Transition (EWPT) deeply impacts the thermal history of the Universe, closely linked to puzzles of DM, matter-antimatter asymmetry
 - Probing the nature of EWPT at colliders

In the SM, the transition is a smooth crossover

In NP, the scalar potential exhibits a barrier, allowing for a FOEWPT with bubble nucleation and expansion

- Higgs precision measurements
- Higgs exotic decay

6. EWPT at CEPC

Under current constraints, both Type-I and Type-II 2HDM can explain the SFOEWPT, Zpole, Higgs precision measurements and mW precision measurement of CDF-II at same time.

Higgs exotic decay $h \rightarrow ss \rightarrow XXYY$ as a probe for the FOEWPT:

CEPC has the potential to probe almost the entire FOEWPT parameter space for 4b and 4tau channels

7. Neutrino physics

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

- Heavy neutrino (@ND, FD)
- Active-sterile neutrino
 transition magnetic moments
- Possibility of connecting to leptogenesis (collider probes) and dark matter (sterile neutrino in the vMSM)
- Non-standard neutrino
 interactions

8. More exotics

High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models

8. More exotics

High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models

- Gaps from LHC, can cover by CEPC

A simple model with a new scalar and and a new fermion

9. Global fits

Global fits: an essential tool to obtaining a thorough understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SUSY global fits
- 2HDM
- SMEFT

CEPC has the potential to greatly enhance our understanding of the parameter space and mass spectrum in the MSSM.

> One-dimensional profiled likelihood ratio for the global fit

Summary and Outlook

- CEPC has good discovery potential for NP, which is good complementary to LHC
- Partial of BSM prospects at CEPC are included in CEPC snowmass white paper in 2023: <u>arXiv:2205.08553</u>
- CEPC BSM white paper is preparing and to be ready for review by this year
- Please let us know if you would like to help to polish and review the BSM white paper !

Thanks for your attention!

About CEPC

Light Higgs

Light Higgs are motivated by 2HDM and Axion-like particle models

Local (global) 2.9 (1.3) σ @ m ≈ 95.4 GeV

Previous CMS result 20+36/fb@ 8+13 TeV:
 Local (global) 2.8 (1.3) σ @ m ≈ 95.3 GeV

CMS 132.2/fb @ 13 TeV: $gg\phi (\phi \rightarrow \tau \tau)$ Local (global) 3.1 (2.7) σ @ m \approx 100 GeV Local (global) 2.8 (2.2) σ @ m \approx 1200 GeV

The excess did not grow with luminosity, but remains intriguing, a which can be searched at CEPC very well if exists.

9. Global fits

Global fits: an essential tool to obtaining a thorough understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SUSY global fits
- 2HDM

• SMEFT

SMEFT global fit for 4-fermion and CPV operators at future colliders

- The sensitivity to NP from global fit is significantly enhanced thanks to the high energy/ luminosity/beam polarization of future lepton colliders

