Neutrino magnetic moment and inert doublet dark matter in a radiative seesaw scenario

Rukmani Mohanta

University of Hyderabad, Hyderabad-500046, India

July 18, 2024

(Based on: Phys. Rev. D 108, 095048 (2023) with S. Singirala and D. Singha)

Motivation

- Despite its tremendous success, SM can be regarded as a low-energy effective theory of a more fundamental theory
- No direct evidence of NP either in Energy frontier or Intensity frontier
- There are a few open issues, which can not be addressed in the SM
 - ullet Existence of Dark Matter \Rightarrow New weakly interacting particles
 - Non-zero neutrino masses \Rightarrow Right-handed (sterile) neutrinos
 - \bullet Observed Baryon Asymmetry of the Universe \Rightarrow Additional CP violating interactions
- It is obvious that SM must be extended.
- ullet As a consequence of $m_
 u
 eq 0$, many new avenues beyond SM are expected to exist
- One among them is neutrinos having EM properties, e.g, electric and magnetic moments
- It is extremely hard to measure their EM properties, but limits can be set from various expts.

Neutrino magnetic moment

 Neutrinos being electrically neutral, do not have EM interactions at tree level. However, such ints can be generated at loop-level.

- Study of neutrino electromagnetic interactions may shed light on the underlying theory
- With the loop suppression factor $\frac{m_\ell^2}{m_W^2}$, the contribution turns out to be

$$\mu_{\nu} \simeq \frac{3eG_F}{4\sqrt{2}\pi^2} m_{\nu} \simeq 3.2 \times 10^{-19} \left(\frac{m_{\nu}}{\rm eV}\right) \mu_{B}$$

ullet Thus, $m_
u
eq 0$ imply non-zero NMM, which can be used to distinguish Dirac and Majorana neutrinos

Neutrino Magnetic moment: Experimental status

 The quest for finding NMM started much before the discovery of neutrinos

 In 1954, Cowan, Reines and Harrison put the upper limit as 10⁻⁷ µ_B in the process of measuring background for a free neutrino search experiment with reactor neutrinos

$$\begin{aligned} & \text{Reactor} & \begin{cases} \text{TEXONO (2010)} & \mu_{\nu} < 2.0 \times 10^{-10} \mu_{B} \,, \\ \text{GEMMA (2012)} & \mu_{\nu} < 2.9 \times 10^{-11} \mu_{B} \,, \\ \text{CONUS (2022)} & \mu_{\nu} < 7.0 \times 10^{-11} \mu_{B} \,. \end{cases} \\ & \text{Accelerator} & \begin{cases} \text{LAPMF (1993)} & \mu_{\nu} < 7.4 \times 10^{-10} \mu_{B} \,, \\ \text{LSND (2002)} & \mu_{\nu} < 6.4 \times 10^{-10} \mu_{B} \,. \end{cases} \\ & \text{Solar} & \begin{cases} \text{Borexino (2017)} & \mu_{\nu} < 2.8 \times 10^{-11} \mu_{B} \,, \\ \text{XENONnT (2022)} & \mu_{\nu} < 6.4 \times 10^{-12} \mu_{B} \,. \end{cases} \end{aligned}$$

Neutrino Magnetic moment

- Neutrinos can have electromagnetic interaction at loop level
- The effective interaction Lagrangian

$$\mathcal{L}_{\mathrm{EM}} = \overline{\psi} \Gamma_{\mu} \psi A^{\mu} = J_{\mu}^{EM} A^{\mu}$$

 \bullet The matrix element of $J_{\mu}^{E\!M}$ between the initial and final neutrino mass states

$$\langle \psi(p')|J_{\mu}^{EM}|\psi(p)\rangle = \bar{u}(p')\Gamma_{\mu}(p',p)u(p)$$

• Lorentz invariance implies Γ_{μ} takes the form

$$\Gamma_{\mu}(p,p') = f_{Q}(q^{2})\gamma_{\mu} + if_{M}(q^{2})\sigma_{\mu\nu}q^{\nu} + f_{E}(q^{2})\sigma_{\mu\nu}q^{\nu}\gamma_{5} + f_{A}(q^{2})(q^{2}\gamma_{\mu} - q_{\mu}q)\gamma_{5}$$

$$f_{Q}(q^{2}), f_{M}(q^{2}), f_{E}(q^{2}) \text{ and } f_{A}(q^{2}) \text{ are the form factors}$$

Magnetic moment in minimal extended SM

For Dirac neutrinos:

$$\begin{cases} \mu_{ij}^{D} & = \frac{eG_{F}}{8\sqrt{2}\pi^{2}}(m_{i} \pm m_{j}) \sum_{l=e,\mu,\tau} f(x_{l}) U_{li}^{*} U_{lj}, \quad x_{l} = m_{l}^{2}/m_{W}^{2} \end{cases}$$

- The diagonal electric dipole moment vanishes: $\epsilon_{ii}^D=0$
- For the Majorana neutrinos both electric and magnetic diagonal moments vanish (matrix is antisymmetric)

$$\mu^{M}_{ii}=\epsilon^{M}_{ii}=0$$

Neutrino Transition moments

Neutrino transition moments are off-diagonal elements of

$$\begin{cases} \mu_{ij}^D & \simeq -\frac{3eG_F}{32\sqrt{2}\pi^2}(m_i \pm m_j) \sum_{l=e,\mu,\tau} \left(\frac{m_l}{m_W}\right)^2 U_{li}^* U_{lj}, & \text{for } i \neq j \end{cases}$$

The transition moments are suppressed wrt diagonal moments

$$\begin{cases} \mu_{ij}^D \\ \epsilon_{ij}^D \end{cases} \simeq -4 \times 10^{-23} \left(\frac{m_i \pm m_j}{eV} \right) f_{ij} \mu_B$$

- For Majorana neutrinos transition moments may be non-vanishing
- When ν_i and ν_j have opposite CP phase

$$\mu_{ij}^{M} = -rac{3eG_Fm_i}{16\sqrt{2}\pi^2}\left(1 + rac{m_j}{m_i}
ight)\sum_{l=e,\mu, au} Im(U_{li}^*U_{lj})rac{m_l^2}{m_W^2}$$

• Thus we get: $\mu_{ij}^M = 2\mu_{ij}^D$

Neutrino-electron elastic scattering

• Most widely used method to determine νMM is $\nu + e^- \rightarrow \nu + e^-$

$$\left(\frac{d\sigma}{dT_e}\right)_{\rm SM} = \frac{G_F^2 m_e}{2\pi} \left[(g_V + g_A)^2 + (g_V - g_A)^2 \left(1 - \frac{T_e}{E_\nu}\right)^2 + (g_A^2 - g_V^2) \frac{m_e T_e}{E_\nu^2} \right]$$

$$\left(\frac{d\sigma}{dT_e}\right)_{\rm EM} = \frac{\pi\alpha^2}{m_e^2} \left(\frac{1}{T_e} - \frac{1}{E_\nu}\right) \left(\frac{\mu_{\rm eff}}{\mu_{\rm B}}\right)^2$$

The cross sections are added incoherently

$$\left(\frac{d\sigma}{dT_e}\right)_{\mathrm{Tot}} = \left(\frac{d\sigma}{dT_e}\right)_{\mathrm{SM}} + \left(\frac{d\sigma}{dT_e}\right)_{\mathrm{EM}} \quad (\propto \frac{1}{T_e} \text{ for low recoil})$$

Model Description

- Objective is to address the neutrino mass, magnetic moment and dark matter in a common platform
- SM is extended with three vector-like fermion triplets Σ_k and two inert scalar doublets η_i
- ullet An additional Z_2 symmetry is imposed to realize neutrino phenomenology at one-loop and for the stability of the dark matter candidate.

	Field	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Z_2
Leptons	$\ell_L = (\nu, e)_L^T$	(1,2, -1/2)	+
	e_R	(1,1, -1)	+
	$\Sigma_{k(L,R)}$	(1,3,0)	_
Scalars	Н	(1, 2 , 1/2)	+
	η_j	(1, 2 , 1/2)	_

Table: Fields and their charges in the present model.

Model Description

• The $SU(2)_L$ triplet $\Sigma_{L,R}$ and inert doublets can be expressed as

$$\Sigma_{L,R} = \frac{\sigma^{a}\Sigma_{L,R}^{a}}{\sqrt{2}} = \begin{pmatrix} \Sigma_{L,R}^{0}/\sqrt{2} & \Sigma_{L,R}^{+} \\ \Sigma_{L,R}^{-} & -\Sigma_{L,R}^{0}/\sqrt{2} \end{pmatrix}, \quad \eta_{j} = \begin{pmatrix} \eta_{j}^{+} \\ \eta_{j}^{0} \end{pmatrix}; \quad \eta_{j}^{0} = \frac{\eta_{j}^{R} + i\eta_{j}^{I}}{\sqrt{2}}$$

- Charged scalars help in attaining neutrino magnetic moment, while
 Charged and neutral scalars help in obtaining neutrino mass at one loop.
- Scalar components annihilate via SM scalar and vector bosons and their freeze-out yield constitutes dark matter density of the Universe.
- The Lagrangian terms of the model is given by

$$\mathcal{L}_{\Sigma} = y_{\alpha k}' \overline{\ell_{\alpha L}} \Sigma_{kR} \tilde{\eta}_{j} + y_{\alpha k} \overline{\ell_{\alpha L}^{c}} i \sigma_{2} \Sigma_{kL} \eta_{j} + \frac{i}{2} \mathrm{Tr}[\overline{\Sigma} \gamma^{\mu} D_{\mu} \Sigma] - \frac{1}{2} \mathrm{Tr}[\overline{\Sigma} M_{\Sigma} \Sigma] + \mathrm{h.c.}$$

The Lagrangian for the scalar sector takes the form

$$\mathcal{L}_{ ext{scalar}} = -\sum_{i=1,2} \left| \left(\partial_{\mu} + rac{i}{2} g \ \sigma^{a} W_{\mu}^{a} + rac{i}{2} g' B_{\mu}
ight) \eta_{i}
ight|^{2} - V(H, \eta_{1}, \eta_{2})$$

Mass Spectrum

The scalar potential is expressed as

$$\begin{split} V(H,\eta_{1},\eta_{2}) &= \mu_{H}^{2} H^{\dagger} H + \mu_{1}^{2} \eta_{1}^{\dagger} \eta_{1} + \mu_{2}^{2} \eta_{2}^{\dagger} \eta_{2} + \mu_{12}^{2} (\eta_{1}^{\dagger} \eta_{2} + \text{hc}) + \lambda_{H} (H^{\dagger} H)^{2} + \lambda_{1} (\eta_{1}^{\dagger} \eta_{1})^{2} \\ &+ \lambda_{2} (\eta_{2}^{\dagger} \eta_{2})^{2} + \lambda_{12} (\eta_{1}^{\dagger} \eta_{1}) (\eta_{2}^{\dagger} \eta_{2}) + \lambda'_{12} (\eta_{1}^{\dagger} \eta_{2}) (\eta_{2}^{\dagger} \eta_{1}) + \frac{\lambda''_{12}}{2} \left[(\eta_{1}^{\dagger} \eta_{2})^{2} + \text{h.c.} \right] \\ &+ \sum_{j=1,2} \left(\lambda_{Hj} (H^{\dagger} H) (\eta_{j}^{\dagger} \eta_{j}) + \lambda'_{Hj} (H^{\dagger} \eta_{j}) (\eta_{j}^{\dagger} H) + \frac{\lambda''_{Hj}}{2} \left[(H^{\dagger} \eta_{j})^{2} + \text{h.c.} \right] \right). \end{split}$$

• The mass matrices of the charged and neural scalar components are:

$$\mathcal{M}_{C}^{2} = \begin{pmatrix} \Lambda_{C1} & \mu_{12}^{2} \\ \mu_{12}^{2} & \Lambda_{C2} \end{pmatrix}, \quad \mathcal{M}_{R}^{2} = \begin{pmatrix} \Lambda_{R1} & \mu_{12}^{2} \\ \mu_{12}^{2} & \Lambda_{R2} \end{pmatrix}, \quad \mathcal{M}_{I}^{2} = \begin{pmatrix} \Lambda_{I1} & \mu_{12}^{2} \\ \mu_{12}^{2} & \Lambda_{I2} \end{pmatrix}$$

$$\Lambda_{Cj} = \mu_{j}^{2} + \frac{\lambda_{Hj}}{2} v^{2},$$

$$\Lambda_{Rj} = \mu_{j}^{2} + \left(\lambda_{Hj} + \lambda'_{Hj} + \lambda''_{Hj} \right) \frac{v^{2}}{2},$$

$$\Lambda_{Ij} = \mu_{j}^{2} + \left(\lambda_{Hj} + \lambda'_{Hj} - \lambda''_{Hj} \right) \frac{v^{2}}{2}.$$

Mass Spectrum

• The flavor and mass eigenstates can be related by $U_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

$$\begin{pmatrix} \eta_1^+ \\ \eta_2^+ \end{pmatrix} = U_{\theta_{\mathcal{C}}} \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix}, \quad \begin{pmatrix} \eta_1^R \\ \eta_2^R \end{pmatrix} = U_{\theta_R} \begin{pmatrix} \phi_1^R \\ \phi_2^R \end{pmatrix}, \quad \begin{pmatrix} \eta_1^I \\ \eta_2^I \end{pmatrix} = U_{\theta_I} \begin{pmatrix} \phi_1^I \\ \phi_2^I \end{pmatrix}.$$

ullet Invisible decays of Z and W^\pm at LEP, limit the masses as

$$M_{Ci} > M_Z/2$$
, $M_{Ri} + M_{Ii} > M_Z$, $M_{Ci} + M_{Ri,Ii} > M_W$.

Neutrino Magnetic Moment

 In this model, the magnetic moment arises from one-loop diagram, and the expression of corresponding contribution takes the form

$$\begin{split} (\mu_{\nu})_{\alpha\beta} &= \sum_{k=1}^{3} \frac{(Y^{2})_{\alpha\beta}}{8\pi^{2}} \mathit{M}_{\Sigma_{k}^{+}} \bigg[(1+\sin 2\theta_{\mathit{C}}) \frac{1}{\mathit{M}_{\mathit{C2}}^{2}} \left(\ln \left[\frac{\mathit{M}_{\mathit{C2}}^{2}}{\mathit{M}_{\Sigma_{k}^{+}}^{2}} \right] - 1 \right) \\ &+ (1-\sin 2\theta_{\mathit{C}}) \frac{1}{\mathit{M}_{\mathit{C1}}^{2}} \left(\ln \left[\frac{\mathit{M}_{\mathit{C1}}^{2}}{\mathit{M}_{\Sigma_{k}^{+}}^{2}} \right] - 1 \right) \bigg], \end{split}$$

where
$$y=y'=Y$$
 and $(Y^2)_{\alpha\beta}=Y_{\alpha k}Y_{k\beta}^T$.

Neutrino Mass

 Contribution to neutrino mass can arise at one-loop: with charged/neutral scalars and fermion triplet in the loop

$$\begin{split} (\mathcal{M}_{\nu})_{\alpha\beta} &= \sum_{k=1}^{3} \frac{(Y^2)_{\alpha\beta}}{32\pi^2} M_{\Sigma_{k}^{+}} \Bigg[(1+\sin 2\theta_{C}) \frac{M_{C2}^2}{M_{\Sigma_{k}^{+}}^2 - M_{C2}^2} \ln \left(\frac{M_{\Sigma_{k}^{+}}^2}{M_{C2}^2} \right) \\ &\quad + (1-\sin 2\theta_{C}) \frac{M_{C1}^2}{M_{\Sigma_{k}^{+}}^2 - M_{C1}^2} \ln \left(\frac{M_{\Sigma_{k}^{+}}^2}{M_{C1}^2} \right) \Bigg] \\ &\quad + \sum_{k=1}^{3} \frac{(Y^2)_{\alpha\beta}}{32\pi^2} M_{\Sigma_{k}^{0}} \Bigg[(1+\sin 2\theta_{R}) \frac{M_{R2}^2}{M_{\Sigma_{k}^{0}}^2 - M_{R2}^2} \ln \left(\frac{M_{\Sigma_{k}^{0}}^2}{M_{R2}^2} \right) \\ &\quad + (1-\sin 2\theta_{R}) \frac{M_{R1}^2}{M_{\Sigma_{k}^{0}}^2 - M_{R1}^2} \ln \left(\frac{M_{\Sigma_{k}^{0}}^2}{M_{R1}^2} \right) \Bigg] \\ &\quad - \sum_{k=1}^{3} \frac{(Y^2)_{\alpha\beta}}{32\pi^2} M_{\Sigma_{k}^{0}} \Bigg[(1+\sin 2\theta_{I}) \frac{M_{I2}^2}{M_{\Sigma_{k}^{0}}^2 - M_{I2}^2} \ln \left(\frac{M_{\Sigma_{k}^{0}}^2}{M_{I2}^2} \right) \\ &\quad + (1-\sin 2\theta_{I}) \frac{M_{I1}^2}{M_{\Sigma_{k}^{0}}^2 - M_{I1}^2} \ln \left(\frac{M_{\Sigma_{k}^{0}}^2}{M_{I1}^2} \right) \Bigg] \,. \end{split}$$

Inert scalar doublet dark matter: Relic density

- The model provides scalar dark matter candidates and we study their phenomenology for dark matter mass up to 2 TeV range.
- All the inert scalar components contribute to the dark matter density of the Universe through annihilations and co-annihilations.

$$\begin{split} &\phi_i^R\phi_j^R\longrightarrow f\bar{f},\ W^+W^-,ZZ,\ hh\quad \text{(via Higgs mediator)}\\ &\phi_i^R\phi_j^I\longrightarrow f\bar{f},\ W^+W^-,\ Zh,\quad \text{(via Z boson)}\\ &\phi_i^\pm\phi_j^{R/I}\longrightarrow f'\overline{f''},AW^\pm,ZW^\pm,hW^\pm,\quad \text{(through W$^\pm$ bosons)} \end{split}$$

• The abundance of dark matter can be computed by

$$\Omega h^2 = \frac{1.07 \times 10^9 \ {\rm GeV}^{-1}}{M_{\rm Pl} \ {g_*}^{1/2}} \frac{1}{J(x_f)}, \ \ {\rm where} \ \ J(x_f) = \int_{x_f}^{\infty} \frac{\langle \sigma v \rangle(x)}{x^2} dx$$

$$\langle \sigma v \rangle (x) = rac{x}{8 M_{\mathrm{DM}}^5 K_2^2(x)} \int_{4 M_{\mathrm{DM}}^2}^{\infty} \hat{\sigma} \times (s - 4 M_{\mathrm{DM}}^2) \sqrt{s} \ K_1 \left(rac{x \sqrt{s}}{M_{\mathrm{DM}}}
ight) ds$$

Dark Matter Direct Searches

- The scalar dark matter can scatter off the nucleus via the Higgs and the Z boson.
- The DM-nucleon cross section in Higgs portal can provide a SI Xsection and the effective interaction Lagrangian takes the form

$$\mathcal{L}_{\text{eff}} = a_q \phi_1^R \phi_1^R q \overline{q}, \quad \text{where}$$

$$a_q = \frac{M_q}{2M_h^2 M_{R1}} (\lambda_{L1} \cos^2 \theta_R + \lambda_{L2} \sin^2 \theta_R) \text{ with } \lambda_{Lj} = \lambda_{Hj} + \lambda'_{Hj} + \lambda''_{Hj}.$$

The corresponding cross section is

$$\sigma_{\mathrm{SI}} = \frac{1}{4\pi} \left(\frac{\textit{M}_{\textit{n}} \textit{M}_{\textit{R1}}}{\textit{M}_{\textit{n}} + \textit{M}_{\textit{R1}}} \right)^2 \left(\frac{\lambda_{\textit{L1}} \cos^2 \theta_{\textit{R}} + \lambda_{\textit{L2}} \sin^2 \theta_{\textit{R}}}{2\textit{M}_{\textit{R1}} \textit{M}_{\textit{h}}^2} \right)^2 f^2 \textit{M}_{\textit{n}}^2$$

 Sensitivity can be checked with stringent upper bound of LZ-ZEPLIN experiment.

Numerical Analysis

- We consider ϕ_1^R to be the lightest inert scalar eigen state and there are five other heavier scalars.
- We consider one parameter M_{R1} and three mass splittings namely δ, δ_{IR} and δ_{CR}.
- The masses of the rest of the inert scalars can be obtained from:

$$\begin{split} M_{R2} - M_{R1} &= M_{I2} - M_{I1} = M_{C2} - M_{C1} = \delta, \\ M_{Ri} - M_{Ii} &= \delta_{\mathrm{IR}}, \quad M_{Ri} - M_{Ci} = \delta_{\mathrm{CR}} \; , \end{split}$$

Scanning over model parameters as given below

$$\begin{split} &100 \text{ GeV} \leq M_{R1} \leq 2000 \text{ GeV}, \quad 0 \leq \sin \theta_R \leq 1, \\ &0.1 \text{ GeV} \leq \delta < 200 \text{ GeV}, \quad 0.1 \text{ GeV} \leq \delta_{\text{IR}}, \delta_{\text{CR}} \leq 20 \text{ GeV}. \end{split}$$

Results on Neutrino oscillations

• For diagonalization of neutrino mass matrix, we take

$$U_{\nu} = U_{\mathrm{TBM}} \cdot U_{13} = \begin{pmatrix} \cos \Theta & \sin \Theta & 0 \\ -\frac{\sin \Theta}{\sqrt{2}} & \frac{\cos \Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{\sin \Theta}{\sqrt{2}} & -\frac{\cos \Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} \cos \varphi & 0 & e^{-i\zeta} \sin \varphi \\ 0 & 1 & 0 \\ -e^{i\zeta} \sin \varphi & 0 & \cos \varphi \end{pmatrix}$$

which gives

$$\mathcal{M}_{\nu} = Y \cdot \operatorname{diag}(\Lambda_{1}', \Lambda_{2}', \Lambda_{3}') \cdot Y^{T}, \quad \mu_{\nu} = Y \cdot \operatorname{diag}(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}) \cdot Y^{T}$$

where Y is the 3×3 Yukawa matrix

 Diagonalizing the matrices using U_ν, gives three unique solutions where the Yukawa couplings of different flavors become linearly dependent,

$$\begin{split} Y_{e1/e3} &= \left(\frac{\sqrt{2}\,\cos\Theta\,\cos\varphi}{\sin\Theta\,\cos\varphi \mp e^{-i\zeta}\sin\varphi}\right)Y_{\tau 1}, \qquad \quad Y_{e2} = -\frac{\sqrt{2}\,\sin\Theta}{\cos\Theta}\,Y_{\tau 2}, \\ Y_{\mu 1/\mu 3} &= \left(\frac{e^{-i\zeta}\,\sin\varphi + \sin\Theta\,\cos\varphi}{e^{-i\zeta}\sin\varphi \mp \sin\Theta\,\cos\varphi}\right)Y_{\tau 1}, \qquad \quad Y_{\mu 2} = -Y_{\tau 2}. \end{split}$$

• Thus, the obtained diagonalized matrices are

$$\mathcal{M}_{\nu}^{\textit{D}}/\mu_{\nu}^{\textit{D}} = \left(\begin{array}{ccc} \textit{a}_1 \ \textit{Y}_{\tau 1}^2 \textit{\Lambda}_1'(\textit{\Lambda}_1) & 0 & 0 \\ 0 & \textit{a}_2 \ \textit{Y}_{\tau 2}^2 \textit{\Lambda}_2' 9 \textit{\Lambda}_2) & 0 \\ 0 & 0 & \textit{a}_3 \ \textit{Y}_{\tau 3}^2 \textit{\Lambda}_3' 9 \textit{\Lambda}_3) \end{array} \right),$$

where,

$$a_1 = \frac{2e^{2i\zeta}}{(-e^{i\zeta}\cos\varphi\sin\Theta + \sin\varphi)^2}, \quad a_2 = \frac{2}{\cos^2\Theta}, \quad a_3 = \frac{2e^{-2i\zeta}}{(e^{-i\zeta}\cos\varphi + \sin\Theta\sin\varphi)^2}.$$

• Using the best-fit values on θ_{12}, θ_{13} and θ_{23} , we fix $\Theta=33.04^\circ$, $\varphi=10.18^\circ$ and $\zeta=180^\circ$.

Some Results

Figure: Left panel: Projection of SI WIMP-nucleon cross section as a function M_{R1} . Right panel: ν MM and and light neutrino mass for suitable Yukawas.

Some Results

Figure: Left panel: Suitable region for triplet mass and Yukawa to explain neutrino phenomenology. Right panel: allowed region for scalar mass splittings, thick (thin) bands correspond to $\delta_{\rm IR}$ ($\delta_{\rm CR}$) respectively.

Benchmark values of parameters

	$M_{R1}~[{ m GeV}]$	$\delta \ [{ m GeV}]$	$\delta_{\mathrm{CR}} \; [\mathrm{GeV}]$	$\delta_{ m IR} \ [{ m GeV}]$	$M_{\Sigma} \ [{ m TeV}]$	Yukawa	$\sin \theta_R$
benchmark-1	1472	101.69	9.03	0.35	420	$10^{-4.89}$	0.09
benchmark-2	628	36.40	4.38	3.45	80	$10^{-4.85}$	0.06

	$ \mu_{ u} [\mu_B]$	$\mathcal{M}_{\nu} \; [\mathrm{GeV}]$	$\mathrm{Log}_{10}^{[\sigma_{\mathrm{SI}}]}~\mathrm{cm}^{-2}$	$\Omega \mathrm{h}^2$
benchmark-1	2.73×10^{-11}	1.99×10^{-10}	-47.78	0.123
benchmark-2	3.03×10^{-11}	1.92×10^{-10}	-47.04	0.119

Excess in electron recoil events

$$\begin{split} \frac{dN}{dT_r} &= n_{\rm te} \times \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} dE_{\nu} \int_{T_{\rm th}}^{T_{\rm max}} dT_e \left(\frac{d\sigma^{\nu_e e}}{dT_e} P_{\rm ee} + \cos^2 \theta_{23} \frac{d\sigma^{\nu_\mu e}}{dT_e} P_{e\mu} \right) \\ &\times \frac{d\phi_s}{dE_{\nu}} \times \epsilon(T_e) \times G(T_e, T_r). \end{split}$$

where, $E_{\nu}^{\rm max} = 420$ KeV and $E_{\nu}^{\rm min} = [T + (2m_eT + T^2)^{\frac{1}{2}}]/2$.

• $T_{\rm th}=1$ KeV and $T_{\rm max}=30$ KeV stand for the threshold and maximum recoil energy of detector.

Variation of ν Magnetic Moment with DM Mass

Conclusion

- Primary objective is to address neutrino mass, magnetic moment and dark matter phenomenology in a common framework.
- SM is extended with three vector-like fermion triplets and two inert scalar doublets to realize Type-III radiative scenario.
- A pair of charged scalars help in obtaining neutrino magnetic moment,
- All charged and neutral scalars come up in getting light neutrino mass at one-loop level.
- All the inert scalars participate in annihilation and co-annihilation channels to provide dark matter relic density consistent with Planck data
- The model is able to provide neutrino magnetic moment in a wide range $(10^{-12}\mu_B$ to $10^{-10}\mu_B)$, in the same ball park of Borexino, Super-K, TEXONO, XENONnT and white dwarfs.

Thank you for your attention!