Neutrino Masses from new **Weinberg-like Operators**

18th July 2024, ICHEP - Prague

Based on: JHEP 05 (2024) 055 [Alessio Giarnetti, Juan Herrero-Garcia, Simone Marciano, Davide Meloni, DV] arXiv: 2312.13356, 2312.14119

Drona Vatsyayan

Neutrinos Mass spectrum

Neutrino Oscillations \rightarrow Neutrinos have a tiny mass

- Absolute mass unknown!
- Origin of mass unknown!

Neutrino masses **Usual Seesaws**

Unique operator at d = 5Weinberg: PRL 43 (1979)

 $\lesssim 10^{14} \text{ GeV}$

UV completions at the tree level \rightarrow Usual Seesaws (SSI/II/III)

Difficult to probe this NP scale for neutrino masses and lepton number violation

Beyond the usual Seesaws New Weinberg-like Operators

$$\mathcal{O}_{5}^{(1)} = LLH\Phi_{i} \qquad \qquad \mathcal{O}_{5}^{(2)} = LL\Phi_{i}\Phi_{i} \qquad \qquad \mathcal{O}_{5}^{(3)} = LL\Phi_{i}\Phi_{j}$$
New scalars take a VEV $\rightarrow \langle \Phi_{i} \rangle = v_{i}, \langle \Phi_{j} \rangle = v_{j} \rightarrow \text{Can't be far from the EW scale}$

$$m_{\nu} \sim vv_{i}/\Lambda \qquad \qquad m_{\nu} \sim v_{i}v_{j}/\Lambda \qquad \qquad m_{\nu} \sim v_{i}v_{j}/\Lambda$$

Collider searches + EWPTs \rightarrow More testable than the usual seesaws

Augment SM by new SU(2) scalar multiplets \rightarrow New operators

 ρ parameter: $\langle \Phi_{i,j} \rangle \ll \langle H \rangle \rightarrow \Lambda$ is parametrically suppressed Extra suppression possible from the WCs

Genuine Models UV Completions

Model	Scalar Multiplets	Mediators	Op.	Wilson Coefficients
$\mathbf{A_1}$	$\Phi_1=4^S_{-1/2}$	$\Sigma = 5_0^F$	$\mathcal{O}_5^{(2)}$	$C_5^{(2)} = y_1 M_{\Sigma}^{-1} y_1^T$
$\mathbf{A_2}$	$\Phi_1 = {f 4}^S_{-3/2}$	$\mathcal{F}=3_{-1}^F$	$\mathcal{O}_5^{(1)}$	$C_{5}^{(1)} = y_{1}M_{\mathcal{F}}^{-1}y_{H}^{T} + y_{H}M_{\mathcal{F}}^{-1}y_{1}^{T}$
$\mathbf{B_1}$	$\Phi_1 = 4_{1/2}^S, \ \ \Phi_2 = 4_{-3/2}^S$	$\mathcal{F}=5_{-1}^F$	$\mathcal{O}_5^{(3)}$	$C_5^{(3)} = y_1 M_F^{-1} y_2^T + y_2 M_F^{-1} y_1^T$
$\mathbf{B_2}$	$\Phi_1 = 3_0^S, \ \Phi_2 = 5_{-1}^S$	$\mathcal{F}=4_{-1/2}^F$	$\mathcal{O}_5^{(3)}$	$C_5^{(3)} = y_1 M_{\mathcal{F}}^{-1} y_2^T + y_2 M_{\mathcal{F}}^{-1} y_1^T$
$\mathbf{B_3}$	$\Phi_1 = 5_{-2}^S, \ \ \Phi_2 = 5_1^S$	$\mathcal{F}=4_{3/2}^F$	$\mathcal{O}_5^{(3)}$	$C_5^{(3)} = y_1 M_{\mathcal{F}}^{-1} y_2^T + y_2 M_{\mathcal{F}}^{-1} y_1^T$
$\mathbf{B_4}$	$\Phi_1 = 5_{-1}^S, \ \ \Phi_2 = 5_0^S$	$\mathcal{F}=4_{1/2}^F$	$\mathcal{O}_5^{(3)}$	$C_5^{(3)} = y_1 M_{\mathcal{F}}^{-1} y_2^T + y_2 M_{\mathcal{F}}^{-1} y_1^T$

Scalar multiplets upto the quintuplet representation i.e. $N_i \leq 5$

Avoid problems with unitarity, non-perturbativity close to the EW scale due to RGE running

Hally, Logan, Pilkington (2012)

UV completions of scenarios \rightarrow Genuine models $\rightarrow m_{\nu} \propto v_{i}$

Do not generate the Weinberg operators with just the SM Higgs

Dimension, Hypercharge, Scalar/Fermion

Kumericki, Picek, Radovic (2012); Babu, Nandi, Tavartkiladze (2009); McDonald (2013); Bonnet, Hernandez, Ota, Winter (2009); Cepedello, Hirsch, Helo (2018)

Genuine Models Loop Contribution

 $(m_{\nu})^{\text{loop}}_{\alpha\beta} \propto \lambda'' \frac{v^2}{8\pi^2 M_{\mathcal{F}}} (y_1 y_2^T + y_2 y_1^T)_{\alpha\beta}$

Genuine Models Scotogenic/Generalised Scotogenic Models

Model	New Fields	Sym.	DM candidates	DM Mass (TeV)
$\mathbf{A_1'}$	$\Phi_1 = 4^S_{-1/2}, \Sigma = 5^F_0$	Z_2	$4^{S}_{-1/2}, 5^{F}_{0}$	$M_{\Phi_1} pprox 3.2, M_\Sigma pprox 10$
$\mathbf{A_2'}$	$\Phi_1 = 4^S_{-3/2} , \mathcal{F} = 3^F_{-1}$	—		
$\mathbf{B_1'}$	$\Phi_1 = 4^S_{1/2}, \Phi_2 = 4^S_{-3/2}, \mathcal{F} = 5^F_{-1}$	U(1)	$4^S_{1/2}, 4^S_{-3/2}$	$M_{\Phi_1} pprox 3.2, M_{\Phi_2} pprox 3.5$
$\mathbf{B_2'}$	$\Phi_1=3^S_0, \Phi_2=5^S_{-1}, \mathcal{F}=4^F_{-1/2}$	U(1)	$3^S_0, 5^S_{-1}$	$M_{\Phi_1} \approx 2.5, M_{\Phi_2} \approx 3.4$
$\mathbf{B'_3}$	$\Phi_1 = \overline{5^S_{-2}}, \Phi_2 = 5^S_1, \mathcal{F} = 4^F_{3/2}$	U(1)	$5^S_{-2}, 5^S_1$	$M_{\Phi_1} \approx 3.9, M_{\Phi_2} \approx 3.4$
$\mathbf{B'_4}$	$\Phi_1 = \overline{5^S_{-1}}, \Phi_2 = 5^S_0, \mathcal{F} = 4^F_{1/2}$	U(1)	$5^S_{-1}, 5^S_0$	$M_{\Phi_1} \approx 3.4, M_{\Phi_2} \approx 9.4$

Cirelli, Forego, Strumia (2006); Cirelli, Strumia, Tamburini (2007)

- $\mathbb{Z}_2/U(1) \to m_{\nu}$ at one loop only, no tree contribution
- (Generalised) Scotogenic models \rightarrow Minimal DM Candidates $\mathcal{O}(1-10)$ TeV

Non-perturbative effects

Genuine Models Low-scale variants

 $M_{\mathcal{F}} \simeq \mathcal{O}(1) \text{ TeV}$

A1: Majorana mass \rightarrow Inverse seesaw

A2: Hierarchy among Yukawas/VEVs: $y_1v_1 \ll y_Hv$

$$y_H \simeq 1 \rightarrow \left(\frac{y_1}{10^{-10}}\right) \left(\frac{v_1}{\text{GeV}}\right) \simeq 1$$

Significant Yukawas \rightarrow Large contribution to D = 6 operators

$$\mathcal{O}_{6} = \left(\overline{L}_{\alpha}\tilde{\phi}_{1}\right)i\gamma_{\mu}D^{\mu}\left(\tilde{\phi}_{1}^{\dagger}L_{\beta}\right) \implies \left(y_{1}\frac{v_{1}^{2}}{M_{\mathcal{F}}^{2}}y_{1}^{\dagger}\right)_{\alpha\beta} \lesssim \mathcal{O}(10^{-3})$$

LFV, Modified couplings of Z/W to leptons, Non-unitary PMNS, FCNCs, Universality violation

Bi:
$$y_1 v_1 \ll y_2 v_2 \rightarrow \text{Rich phenomenology from } \Phi_2$$
$$\left(\frac{y_1 v_1}{10^{-8} \text{ GeV}}\right) \left(\frac{y_2 v_2}{\text{GeV}}\right) \simeq 1, M_{\mathcal{F}} \simeq \text{TeV}$$

Scalar Sector **Bounds on VEVs**

New SU(2) scalar multiplets \rightarrow Violate Custodial symmetry \rightarrow Contribute to $\rho \rightarrow \rho \neq 1$ Electroweak precision measurements $\rightarrow \Delta \rho = \rho - 1 \ll 1$

Class A models: $v_i < O(\text{GeV}) \ll v$

Scalar Sector Induced VEVs

 $\mu \Phi_i H^2$ $v_i \simeq \mu$ $2m_{\Phi}^2$ Present for triplets: Model B2

Models with just quintuplets \rightarrow Both VEVs cannot be naturally suppressed

New scalars get induced VEVs \rightarrow Integrate out the heavy scalars \rightarrow Higher dimensional operators

New VEVs induced by the Higgs doublet \rightarrow Naturally suppressed for $M_{\Phi} \gg v$

$$\lambda \Phi_i H^3$$

$$\simeq \lambda \frac{v^3}{2m_{\Phi_i}^2}$$

$$v_j \simeq \lambda v_i \frac{v^2}{2m_{\Phi_i}^2}$$

 $\lambda^{''} \Phi_i \Phi_i H^2$

Present for quadruplets: Models A1 & A2, B1

Present for all B type models

Scalar Sector Induced VEVs

$$(m_{\nu})_{\alpha\beta} \sim \lambda^{2} \frac{\nu^{6}}{4m_{\Phi_{1}}^{2}m_{\Phi_{2}}^{2}} \left(y_{1}M_{\mathcal{F}}^{-1}y_{2}^{T} + y_{2}M_{\mathcal{F}}^{-1}y_{1}^{T}\right)_{\alpha\beta}$$

New scalars get induced VEVs \rightarrow Integrate out the heavy scalars \rightarrow Higher dimensional operators (n > 5)

$$(m_{\nu})_{\alpha\beta} \sim \lambda^{2} \lambda'' \frac{\nu^{8}}{8m_{\Phi_{1}}^{4} m_{\Phi_{2}}^{2}} \left(y_{1} M_{\mathcal{F}}^{-1} y_{2}^{T} + y_{2} M_{\mathcal{F}}^{-1} y_{1}^{T} \right)_{\alpha\beta}$$

Collider Phenomenology Production of multi-charged scalars

Pair production and Associated production at the LHC

 $q\bar{q'} \rightarrow W^{\pm} \rightarrow \Phi^{\pm\pm\pm\pm}\Phi^{\mp\mp\mp}, \Phi^{\pm\pm\pm}\Phi^{\mp\mp}, \Phi^{\pm\pm\pm}\Phi^{\mp\mp}$

Collider Phenomenology Doubly-charged scalar decays

Decays of doubly charged scalars \rightarrow Same-sign Dilepton signatures

Effective interaction between doubly charged scalars and a pair of leptons

> Decays suppressed for large v_i

Free of SM background

Collider Phenomenology Doubly-charged scalar decays

Proportional to v_i^2 Dominant channel for large VEVs

 $\Phi^{\pm\pm} o \Phi^{\pm} \pi^{\pm}$

 $\Phi^{\pm\pm}\to \Phi^{\pm}l^{\pm}\nu_l$

 $\Phi^{\pm\pm} \to \Phi^{\pm} q \bar{q'}$

Cascade decays

Proportional to ΔM , the scalar mass splitting

Collider Phenomenology Doubly-charged scalar decays

Collider Phenomenology Triply/Quadruply-charged scalar decays

4 body decays \rightarrow Phase space suppression \rightarrow Smaller decay widths

$$\Gamma_{\text{tot}}(\Phi^{\pm\pm\pm\pm}) \sim \Gamma_{\text{tot}}(\Phi^{\pm\pm\pm}) \frac{f(3)}{f(4)} \frac{g^2 M_{\Phi^{\pm\pm\pm\pm}}^2}{M_W^2} \simeq 0.017 \left(\frac{M_{\Phi^{\pm\pm\pm\pm}}}{500 \text{ GeV}}\right)^2 \Gamma_{\text{tot}}(\Phi^{\pm\pm\pm})$$
Phase space suppression: $f(n) = 4 (4\pi)^{2n-3} (n-1)!(n-2)!$

Displaced vertices at the LHC for $M_{\Phi} < O(1)$ TeV

Arbeláez, Helo, Hirsch (2019)

Collider Phenomenology Signatures

Production + Decays of multi-charged scalars and $W^{\pm} \rightarrow$ Signatures of new physics at the LHC

Observation of $l^{\pm}l^{\pm}W^{\mp}W^{\mp}$ events \rightarrow Experimental evidence of LNV

Decays	$\Phi^{2-} \rightarrow 2l^-$	$\Phi^{2-} \rightarrow 2W^-$	$\Phi^{3-} \rightarrow 2l^- W^-$	$\Phi^{3-} \rightarrow 3W^-$	$\Phi^{4-} \rightarrow 2l^- 2W^-$	$\Phi^{4-} \rightarrow 4W^-$
$\Phi^{2+} \to 2l^+$	$(2l^+2l^-)$	$2l^+2W^-$	$2l^+2l^-W^-$	$2l^+3W^-$	×	×
$\Phi^{2+} \to 2W^+$	$2W^+2l^-$	$2W^{+}2W^{-}$	$2W^+W^-2l^-$	$2W^+3W^-$	×	×
$\Phi^{3+} \to 2l^+ W^+$	$2l^+2l^-W^+$	$2l^+2W^-W^+$	$2l^+2l^-W^+W^-$	$2l^+ 3W^- W^+$	$2l^+2l^-2W^-$	$2l^+4W^-W^+$
$\Phi^{3+} \to 3W^+$	$3W^+2l^-$	$3W^+2W^-$	$2l^{-}3W^{+}W^{-}$	$3W^+3W^-$	$2l^-3W^+2W^-$	$3W^+4W^-$
$\Phi^{4+} \to 2l^+ 2W^+$	×	×	$2l^+2l^-2W^+W^-$	$2l^+2W^+3W^-$	$2l^+2l^-2W^+2W^-$	$2l^+2W^+4W^-$
$\Phi^{4+} \to 4W^+$	×	×	$2l^{-}4W^{+}W^{-}$	$4W^{+}3W^{-}$	$2l^-4W^+2W^-$	$4W^+4W^-$

Bambhaniya, Chakrabortty, Goswami Konar (2013); Ghosh, Jana, Nandi (2018) Aguila, Chala, Santamaria, Wudka (2013)

Diagonal/Off-diagonal elements of $(m_{\nu})_{ij} \rightarrow \text{LFV}$ 4-lepton events $l_i^{\pm} l_i^{\pm} l_j^{\mp} l_j^{\mp}; l_i^{\pm} l_j^{\pm} l_j^{\mp} l_i^{\mp} l$

0-8 lepton events: SS2L, SS3L and SS4L

Collider Phenomenology Searches for Doubly-charged scalars

ATLAS & CMS search for doubly-charged scalars in multi-lepton final states

Electroweak Precision Tests At Loop-level

New SU(2) multiplets \rightarrow Modify the oblique parameters S, T, U

Custodial symmetry broken \rightarrow Complications with computation of S,T,U at one-loop level

Jegerlehner (1991); Gunion, Vega, Wudka (1991); Albergaria, Lavoura (2022)

Corrections to W-boson mass

	PDG 2022	CDF 2022
S	-0.01 ± 0.07	0.14 ± 0.08
T	0.04 ± 0.06	0.26 ± 0.06
$ ho_{ST}$	0.92	0.93

$$\Phi = (\Phi_{I}, \Phi_{I-1}, \dots, \Phi_{-I})^{T} \quad M_{\Phi_{-I}} = m, M_{\Phi_{-I+1}} = m + \Delta m, \dots, M_{\Phi_{I}} = m + 2I \Delta m$$

Peskin, Takeuchi (1992); Lavoura, Li (1994)

$$m_W \simeq m_W^{\text{SM}} \left[1 - \frac{\alpha}{4(1 - 2s_W^2)} (S - 2(1 - s_W^2)T) \right]$$

Maksymyk, Burgess, London (1994)

Assumptions

- New scalar VEVs $v_i \ll v \rightarrow$ Taken to be negligible
- Scalars do not mix among themselves or with other scalars
 - Take $U = 0 \rightarrow$ Improves the precision on S and T

Electroweak Precision Tests At Loop-level

 $\Delta m \sim \mathcal{O}(0.1) \lambda -$

Conclusions

New scalar multiplets at EW scale \rightarrow New Weinberg-like operators

New scalar VEVs suppressed \rightarrow Neutrino masses can be generated for lower LNV scales

EW scalars \rightarrow Production at colliders, contribution to W-boson mass

Collider signatures \rightarrow SS2L, SS3L, SS4L, LNV + LFV events

Small VEVs ($\leq O(100) \text{ keV} \rightarrow \text{Neutrino mass matrix can be reconstructed from doubly}$ charged-scalars decays

Backup

Neutrino masses The Weinberg Operator: LLHH

UV completions at the tree level \rightarrow Usual Seesaws

Fermion triplet: Σ $\langle H \rangle$ $\langle H \rangle$

Foot, Lew, He, Joshi (1989)

New Weinberg-like Operators **Extensions with 1 Scalar multiplet**

 $\mathcal{O}_{5}^{(1)} = (LH)_{\mathbf{N}} (L\Phi_{i})_{\mathbf{N}}$

 $(LH)_{1.3}(L\Phi_i)_{3.5}$

Fermion triplet

 $(LL)_{1,3}(H\Phi_i)_{1,3,5}$ Scalar triplet, Scalar Singlet

New Weinberg-like Operators **Extensions with 1 Scalar multiplet**

 $\langle \Phi_1 \rangle$ $\langle \Phi_1 \rangle$ u_L \mathcal{V}_{I}^{c}

UV Completions

 $(L\Phi_i)_{3.5}(L\Phi_i)_{3.5}$ Fermion triplet

Fermion quintuplets

 $(LL)_{1,3}(\Phi_i\Phi_i)_{1,3,5,7}$ Scalar triplet, Scalar Singlet

 $2^{S}_{\pm 1/2}$

New Weinberg-like Operators **Extensions with 2 Scalar multiplets**

$$\mathcal{O}_5^{(3)} = (L\Phi_i)_{\mathbf{N}} (L\Phi_j)_{\mathbf{N}}$$

Possible SU(2) representations for Φ_1 and Φ_2 : $(N_1, Y_1), (N_2, Y_2)$

 $N_1 \otimes N_2 \subset 1$ or $N_1 \otimes N_2 \subset 3$ $|Y_1 + Y_2| = 1$

 $N_1 \otimes 3 = (N_1 - 2) \oplus N_1 \oplus (N_1 + 2)$ Two consecutive even/odd representations $\mathbf{1}_{0}^{S}, \mathbf{3}_{\pm 1}^{S} = \mathbf{3}_{0}^{S}, \mathbf{3}_{\pm 1}^{S} = \mathbf{2}_{\pm 1/2}^{S}, \mathbf{4}_{\pm 1/2}^{S}$ $3_{\pm 1}^{S}$, 5_{0}^{S} 3_{0}^{S} , $5_{\pm 1}^{S}$ $2_{\pm 1/2}^{S}$, $4_{\pm 3/2}^{S}$

UV Completions

 $(LL)_{1,3}(\Phi_i\Phi_i)_{\mathbf{N}_1\otimes N_2}$ Scalar triplet, Scalar Singlet

UV Completions **Extensions with 1 Scalar multiplet**

Possible scalar multiplet: Quadruplet

Interesting UV models \rightarrow Fermion mediator

UV Completions Extensions with 2 Scalar multiplets

$$\mathcal{O}_5^{(2)} = (L\Phi_i)_N (L\Phi_j)_N \longrightarrow N_2 = N_1 + 2 \quad \text{Or} \quad N_1 = N_2$$

Majorana (Y = 0)

 $Y_1 = Y_2 = -1/2$

Only even reps. allowed

$$\mathscr{L} \supset -(\overline{L}y_1 \Phi_1 \Sigma) - (\overline{L}y_2 \Phi_2 \Sigma) - \frac{1}{2} \overline{\Sigma} M_{\Sigma} \Sigma^c + \mathrm{H.c.}$$

 $N_2 = N_1$

+2
$$(2N_1 + 1)_0^F$$
 $2_{-1/2}^S, 4_{-1/2}^S$
 $4_{-1/2}^S, 6_{-1/2}^S$

Interesting UV models \rightarrow Fermion mediator

Vector-like (Y
$$\neq$$
 0) $|Y_1 + Y_2| = 1$ Both even/or
reps. allower $\mathscr{L} \supset -(\overline{L}y_1 \Phi_1 \mathscr{F}_R) - (\overline{L}y_2 \Phi_2 \mathscr{F}_L) - \mathscr{F}M_{\mathscr{F}} \mathscr{F} + H.c.$ $N_1 = N_2$ $(N_1 \pm 1)_{-1/2 - Y_1}^F$ $N_1 < N_2$ $(N_1 + 1)_{-1/2 - Y_1}^F$

Scalar Sector Potential

New scalars carry lepton number L \rightarrow Scalar potential terms may violate $U(1)_L$ symmetry

 $V^{\mathbf{A}}(H, \Phi_1) =$

 $V_{\mathcal{K}}^{\mathbf{A}_{\mathbf{I}}}(H, \Phi_1) = \lambda_6 \Phi_1^* H \Phi_1$

 $V^{\mathbf{A}_{\mathbf{II}}}_{\mathcal{V}}(H, \Phi$

Two new scalar multiplets \rightarrow Scalar potential can have an accidental $U(1)_X$ symmetry

 $V_{\mathcal{K}}^{\mathbf{B}}(H, \Phi_1, \Phi_2) \supset V$

 $V_X^{\mathbf{B}}(H, \Phi_1, \Phi_2) = \lambda_1 H H \Phi_1 \Phi_2$ $X_1 = -X_2$

Symmetry breaking \rightarrow Implications for two different pseudo-Nambu-Goldstones Massive pseudoscalars (M < 45 GeV) \rightarrow Constraints on the LNV couplings

$$= V_L^{\mathbf{A}}(H, \Phi_1) + V_{\mathcal{L}}^{\mathbf{A}}(H, \Phi_1)$$

$$\Phi_1 + \lambda_7 H \Phi_1 H \Phi_1 + \lambda_8 H^* \Phi_1 H H + \mathbf{H} \cdot \mathbf{c} \cdot M_{\Phi_i} \simeq \sqrt{\lambda'} \cdot v \left(1 + \sqrt{\frac{\lambda''}{\lambda'} \frac{v}{v_i}} \right)$$

$$\Phi_1 = \lambda_6 \Phi_1 H H H + \mathbf{H} \cdot \mathbf{c} \cdot \lambda'^{(\prime\prime)} < \sqrt{4\pi} \to M_{\Phi} < 10^3 \text{TeV}$$

$$V_X^{\mathbf{B}}(H, \Phi_1, \Phi_2) + V_X^{\mathbf{B}}(H, \Phi_1, \Phi_2)$$

Collider Phenomenology Triply-charged scalar decays

May lead to Displaced vertices

Ghosh, Jana, Nandi (2018)

Phenomenology LFV Constraints

		Upper limits			
Model	Yukawa combination	$lphaeta=\mu e$	$\alpha\beta=\tau e$	$\alpha\beta=\tau\mu$	
$\mathbf{A_1}$	$ y_1^{eta^*}y_1^lpha ({ m TeV}/M_\Sigma)^2$	< 0.0002	< 0.13	< 0.16	
$\mathbf{A_2}$	$ y_1^{eta^*}y_1^lpha ({ m TeV}/M_{\mathcal F})^2$	< 0.0004	< 0.24	< 0.28	
$\mathbf{B_1}$	$ y_1^{eta^*}y_1^lpha - 0.5 y_2^{eta^*}y_2^lpha ({ m TeV}/M_{\mathcal{F}})^2$	< 0.0004	< 0.29	< 0.34	
$\mathbf{B_2}$	$ y_1^{eta^*}y_1^lpha - 50 y_2^{eta^*}y_2^lpha ({ m TeV}/M_{\mathcal{F}})^2$	< 0.0011	< 0.72	< 0.84	
B ₃	$ y_1^{\beta^*}y_1^{lpha} - 2.12 y_2^{\beta^*}y_2^{lpha} ({ m TeV}/M_{\mathcal{F}})^2$	< 0.0002	< 0.15	< 0.18	
$\mathbf{B_4}$	$ y_1^{\beta^*}y_1^{lpha} + 6.6 y_2^{\beta^*}y_2^{lpha} ({ m TeV}/M_{\mathcal{F}})^2$	< 0.0004	< 0.24	< 0.28	