BDF/SHiP facility at CERN

Andrey Golutvin Imperial College London & CERN

on behalf of the SHiP Collaboration of 38 institutes from 15 countries and CERN

BDF/SHIP references to reports/publications

- 17 submitted to SPSC and ESPPSU2020
- 26 on the facility development
- 37 on the detector development
- 11 on physics studies
- 20 on theory developments dedicated to SHiP
- 20 PhD thesis, a few more in pipeline

BDF/SHiP approved by the CERN RB in March 2024

Recent documents:

- Proposal, BDF/SHiP at the ECN3 high-intensity beam facility, CERN-SPSC-2023-033
- Letter of Intent, BDF/SHiP at the ECN3 high-intensity beam facility, CERN-SPSC-2022-032

SHiP experimental techniques

- ✓ Sensitivity depends on three factors
 - Yields (protons on target)
 - Acceptance (lifetime & angular coverage)
 - Background level

✓ Exhaustive search should aim at a "model-independent" detector setup

• Full reconstruction and identification of both fully and partially reconstructible modes

→ Sensitivity to partially reconstructed modes also proxy for the unknown

- In case of discovery → make precise measurements to discriminate between models and test compatibility with hypothetical signal
- → FIP decay search in background-free environment and LDM scattering
- → Rich "bread and butter" neutrino interaction physics with unique access to tau neutrino

Also suitable for neutrino interaction physics with all flavours

arXiv:2304.02511, submitted to EPJC

Beam dump optimization

- ✓ Target design for signal/background optimization:
 - Very thick \rightarrow use full beam and secondary interactions (12 λ)
 - High-A&Z \rightarrow maximize production cross-sections (Mo/W)
 - Short λ (high density) \rightarrow stop pions/kaons before decay
- → BDF luminosity for a very thick target (e.g. >1m Mo/W) with

4x10¹⁹ protons on target per year currently available in the SPS

- → BDF/SHiP **annual** yields in the detector acceptance:
 - ~ 2×10^{17} charmed hadrons (>10 times the yield at HL-LHC)
 - ~ 2 × 10^{12} beauty hadrons
 - ~ 2×10¹⁵ tau leptons
 - O(10²⁰) photons above 100 MeV
 - Large number of neutrinos detected with 3t-W v-target: $3500 v_{\tau} + \bar{v}_{\tau}$ per year, and 2×10⁵ $v_e + \bar{v}_e$ / 7×10⁵ $v_{\mu} + \bar{v}_{\mu}$ regardless of target design

 \checkmark No technical limitations to operate beam and facility with 4x10¹⁹ protons/year for 15 years

SHiP detector

HSDS: Background evaluation for FIP decay search

Background estimation based on full GEANT-based MC

→ Very simple and common selection for both fully and partially reconstructed events – model independence
 → Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

			tion							
Track	momentum	Select		$> 1.0 {\rm GeV}$	V/c					
Track pair distance of closest approach				<1	em					
Track pair vertex position in decay volume				$> 5 \mathrm{cm}$ from inner w	all	Expected background				
			>	100 cm from entrance (partial	ly)					
Impact parameter w.r.t. target (fully reconstructed)				< 10	em	for 6×10^{20} pot (15 years of operation)				
Impact parameter w.r.t. target (partially reconstructed)			nstructed)	< 250	em					
	Time coincidence	4		_	Background s	ource	Expected	ed events		
<mark>⊣</mark> ⊢			UBT/SBT	-	Neutrino DIS		< 0.1 (fully) / < 0.3 (partially)			
L										
					Muon DIS (fa	ctorisation)*	$< 5 \times 10^{-3}$ (fully) / < 0.2 (j	partially)		
				Muon combinatorial (1.3			$1) \times 10^{-4}$			
							5			

Main goals of SND

✓ Search for LDM

- Experimental signature of LDM scattering:

A shower produced by the electron scattered by LDM and "nothing else"

✓ Direct search through scattering

 ✓ Background is dominated by neutrino elastic scattering, for 6 ×10²⁰ PoT:

6 ×10 ²⁰	ν_e	$\bar{\nu}_e$	$ u_{\mu}$	$ar{ u}_{\mu}$	all
Elastic scattering on e^-	156	81	192	126	555
Quasi - elastic scattering	-	27			27
Resonant scattering	-	-			-
Deep inelastic scattering	-	-			-
Total	156	108	192	126	582

✓ Tau neutrino physics

- Experimental signature of tau neutrino:
 - (i) "double-kink" topology (resulted from v_{τ} -interaction and τ -decay)
 - (ii) **Missing P**_t carried away by 2 neutrinos from τ -decay

Neutrino interaction physics

Incl. reconstruction efficiencies

✓ Very large sample of tau neutrinos available at BDF/SHIP via D_s → τv_τ → σ_{stat} < 1% for all neutrino flavours ✓ Accuracy determined by systematic uncertainties ~5% in all neutrino fluxes

✓ LFU in neutrino interactions

- $\sigma_{stat+syst}$ ~3% accuracy in ratios: v_e / v_μ , v_e / v_τ and v_μ / v_τ
- ✓ Measurement of neutrino DIS cross-sections up to 100 GeV
 - E_{ν} < 10 GeV as input to neutrino oscillation programme (DUNE in particular)
 - v_{τ} cross-section at higher energies input to cosmic neutrino studies
 - $\sigma_{\text{stat+syst}} < 5\%$
- ✓ Test of F_4 and F_5 ($F_4 \approx 0$, $F_5 = F_2/2x$ with $m_q \rightarrow 0$) structure functions in $\sigma_{\nu-CC\,DIS}$
 - Never measured, only accessible with tau neutrinos [C.Albright and C.Jarlskog, NP B84 (1975)]

BDF/SHiP preliminary schedule

Accelerator schedule	2022	2023 2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
LHC	LHC Run 3			LS3 Run 4						LS4	
SPS (North Area)											
BDF / SHiP	Study ///	Besign and p	rototyping		Produc	ction / Cons	traction / In	stallation //	C	peration	
Milestones BDF		DR studies			RR				8		
Milestones SHiP		🌋 TDR stud	dies	1	PRR			C	3		
		Ϋ́,			T _						
		Approval for 1	ΓDR	Subm	ission of 7	TDRs		Facility of	ommissio	oning	

- ~2.5 years for detector TDRs
- Construction / installation of facility and detector is decoupled from NA operation
- Availability of test beams challenging
- Important to start data taking >1 year before LS4
- Several upgrades/extensions of the BDF/SHiP in consideration over the operational life

Summary

- New programme at "Coupling frontier" at CERN with synergy between accelerator-based searches and searches in astrophysics/cosmology
- ✓ BDF/SHiP capable of covering the heavy flavour region of parameter space, out of reach for collider experiments
 - Capability not only to establish existence but to measure properties such as precise mass, branching ratios, spin, etc
 - Complementary to FIP searches at HL-LHC and future e+e⁻ collider, where FIPs can be searched in boson decays
 HNLs. Majorana nature, pattern = {0., 1., 0.}

✓ Rich "biscuit'n'rhum" neutrino physics programme, including fundamental tests of SM in tau neutrino interactions.