

Searches for New Resonances in CMS

Ilias Zisopoulos National and Kapodistrian University of Athens (NKUA) on behalf of the CMS collaboration

ICHEP 2024, International Conference on High Energy Physics, 18-24 July 2024, Prague

Introduction

- CMS
- Despite being our most successful theory of particle physics, the Standard Model (SM) is incomplete.
- Myriad of theoretical models involve new, Beyond the Standard Model (BSM) resonances that decay to massive bosons, photons, leptons or jets.
- CMS EXO group has a rich program of hunting for such resonances (EXO public results).

- A selection of recent, full Run2 (2016 2018) CMS results will be discussed in this talk:
 - ✓ "Search for VBF $Z' \rightarrow \tau \tau (WW)$ " (<u>CMS-EXO-21-015</u>)
 - ✓ "Search for DY $Z' \rightarrow \tau \tau$ " (<u>CMS-EXO-21-016</u>)
 - ✓ "Search for BFF $Z' \rightarrow \mu\mu$ associated with b jets" (<u>CMS-EXO-22-006</u>)
 - ✓ "Search for low mass boosted dijet resonances" (<u>CMS-EXO-24-007</u>)
 - ✓ "Search for paired dijet resonances" (<u>CMS-EXO-21-010</u>)

Dark sector searches with the CMS experiment

Invisible	Visible	Long-lived
Mono-X	Low-mass resonances	Displaced leptons
Monojet (<u>EXO-20-004</u>)	Boosted dijet (EXO-18-012)	Displaced ee, emu, mumu (EXO-18-003)
Mono-Z (<u>EXO-19-003</u>)	Dijet + photon (<u>EXO-17-027</u>)	Displaced dimuons (EXO-21-006, EXO-23-014)
Monotop (EXO-16-051)	Boosted bbbar (EXO-17-024)	H to aa to 4mu (<u>HIG-18-003</u>)
Monophoton (EXO-16-053)	Dimuon including scouting (EXO-19-018)	Displaced dimuon scouting (EXO-20-014)
Mono-H (<u>EXO-18-011</u>)	Dimuon scouting (EXO-21-005)	Hadronic LLP decays
Dark Higgs (WW) + MET (EXO-21-012)	High-mass resonances	Displaced jets (EXO-19-021)
H to invisible	Dijet + ISR (<u>EXO-19-004</u>)	Displaced vertices (EXO-19-013)
VBF (<u>HIG-20-003</u>)	Dijet (<u>EXO-19-012</u>)	Emerging jets (<u>EXO-18-001</u> , <u>EXO-22-015</u>)
ttH/VH (<u>HIG-21-007</u>)	Dilepton (EXO-19-019)	Stopped particles (EXO-16-004)
Dark photons: ZH (<u>EXO-20-005</u>), VBF (<u>EXO-19-007</u>)	Othersignatures	Muon detector showers (EXO-20-015, EXO-21-008)
Hidden Valley	Fractionally charged part. (EXO-19-006)	LLP + pr ^{miss}
Semivisible jets (EXO-19-020)	SUEPs, offline (EXO-23-002)	Inelastic DM (EXO-20-010)
	Stealth/RPV stops (SUS-19-004)	Delayed jets (EXO-19-001)
	ALPs in PbPb (FSQ-16-012)	Trackless and OOT jets (EXO-21-014)
	CEP w/ TOTEM (EXO-19-009)	Displaced vertices + MET (EXO-22-020)

CMS-EXO-23-005

 New review paper on CMS Dark Sector searches has been submitted recently in Physics Reports.

- The impact of ~ 40 CMS analyses on the search for dark matter are being reviewed, including new results and re-interpretations.
- Couplings as low as 10^{-5} and mass ranges between ~ 1 GeV and a few TeV have been investigated.
 - > No signal observed but large regions of the model parameter space excluded.
- Among these are searches for low and high mass resonances.

Signal model:

- Heavy neutral spin-1 gauge boson (Z') produced via vector boson fusion (VBF) processes.
- Two decay modes: $Z' \rightarrow \tau \tau$ and $Z' \rightarrow WW$
- Non-universal fermion couplings, favouring highergeneration fermions.

Experimental signature:

- Four final states considered: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$
- Two forward jets from unique VBF topology → allows significant background rejection (QCD)
 - Dijet invariant mass > 500 GeV
 - > $η_{j1}η_{j2} < 0$, |Δη(j1, j2)| > 4.2

First ever search for Z' production through VBF at the LHC

CMS-EXO-21-015

Dominant backgrounds:

- Depend on the final state \rightarrow Jets faking τ_h or genuine τ_h
 - $\gg W/Z + jets$
 - tt production
 - QCD multilets

Background prediction:

- Major backgrounds in each channel are estimated from data.
 - Dedicated data CRs
 - \triangleright ABCD method
- Smaller backgrounds estimated with use of simulation.

CMS-EXO-21-015

Results:

- No deviations from SM predictions.
- Upper cross section and exclusion limits derived for different signal scenarios.
 - > Varying coupling to SM weak bosons $(g_{Z'VV} = \kappa_V g_{ZVV})$
 - Coupling to 1st and 2nd generation fermions

$$(g_{Z'f\bar{f}}=\pmb{g_l}g_{Zf\bar{f}})$$

Coupling to 3rd generation fermions

$$(g_{Z'f\bar{f}} = \mathbf{g}_{\mathbf{h}}g_{Zf\bar{f}})$$

Non-universal fermion coupling (NUFM)

Universal fermion coupling

СM

Search for DY $Z' \rightarrow \tau \tau$

Signal model:

- Z' produced via **quark-antiquark fusion** processes.
- Explore models with non-universal couplings to fermions, by probing $Z' \rightarrow \tau \tau$ decays.

Experimental signature:

Three final states considered: $\tau_h \tau_h$, $\tau_\mu \tau_h$, $\tau_e \tau_h$

%

2

2

CMS-EXO-21-016

Veto events from VBF processes \rightarrow complementary and orthogonal to **CMS-EXO-21-015**

Dominant backgrounds:

- Depend on the final state.
- **QCD multijets** \rightarrow data-driven prediction with ABCD method.
- **DY**, W + jets, VV, $t\bar{t}$, single top \rightarrow prediction from simulation using SFs from CRs.

Search for DY $Z' \rightarrow \tau \tau$

Analysis strategy:

A **shape-based analysis** is performed using the reconstructed mass of the *Z*' candidate:

The $m_{rec}(Z')$ distribution is used as the fit discriminant to determine the likelihood of observing signal in the presence of the predicted background rate.

 $m_{rec}(Z') = \sqrt{(E_1^{\tau vis} + E_2^{\tau vis} + |\mathbf{p}^{Z'miss}|)^2 - (\mathbf{p}_1^{\tau vis} + \mathbf{p}_2^{\tau vis} + \mathbf{p}^{Z'miss})^2}, \quad \mathbf{p}^{Z'miss} = (-(\vec{p}_{1T}^{\tau vis} + \vec{p}_{2T}^{\tau vis}), 0)$

Results:

- No deviations from SM predictions found.
- Set upper cross section limits on $\sigma B(Z' \to \tau \tau)$ vs m(Z').
- Exclude a Z' with mass less than 3, 3.5, and 4.1 TeV for BF of 1%, 3.37% (SM), and 10% respectively.
- These exclusion limits are the most stringent to date for $Z' \rightarrow \tau \tau$.

<u>CMS-EXO-21-016</u>

Signal model:

- Heavy neutral, spin-1, gauge boson (Z')
- Non-universal flavour production (narrow resonance) via bottom quark (g_b) or bottom-strange quark $(g_b \delta_{sb})$ coupling (Bottom Fermion Fusion BFF).
- $Z' \rightarrow \mu \mu$ only, no couplings to electrons or taus.
- m(Z') range between 125 and 350 GeV probed.
 - Complementary to <u>CMS-EXO-22-016</u> that probes masses between 350 GeV and 2 TeV.
 - Complementary to <u>CMS-EXO-21-015</u> & <u>CMS-EXO-21-016</u> (ττ/WW final states)

Experimental signature:

- Di-muon final state associated with at least one *b* jet:
 - > $SR_b^{\mu\mu}$ (1-jet category)
 - > $SR_{b+j/b}^{\mu\mu}$ (2-jet category)

CMS-EXO-22-006

CMS-EXO-22-006

 Mass dependent selection cuts to maximize sensitivity.

Cut	1j
$p_{\mathrm{T}}^{\mathrm{miss}}/m_{\mu\mu}$	$< 223 \cdot (m_{\ell\ell})^{-1.23}$
$H_T - L_T$	$< -0.43 \cdot m_{\ell\ell} + 47$
Cut	2ј
$p_{\mathrm{T}}^{\mathrm{miss}}/m_{\mu\mu}$	$< 67 \cdot (m_{\ell\ell})^{-1.04}$
$H_T - L_T$	$< -0.56 \cdot m_{\ell\ell} + 124$

Dominant backgrounds & prediction:

- DY at lower dilepton masses, $t\bar{t}$ at higher.
- Fully data-driven background prediction with ABCD method:
 - Construct CRs with di-electron and non b jet final states.
 - Fit the CRs with log-norm function to smoothen the prediction.

$N_{\rm b}$	$N_{ m jets}^{ m all}$	$\mu\mu$	ee
≥ 1	2	$SR^{\mu\mu}_{b+j/b}$	$CR^{ee}_{b+j/b}$
0	2	$CR_{j+j}^{\mu\overline{\mu}}$	CR_{j+j}^{ee}
1	1	$SR_b^{\mu\mu}$	CR_b^{ee}
0	1	$CR_{j}^{\mu\mu}$	CR_{j}^{ee}

Results:

- Simultaneous maximum likelihood fit across data-taking years in both jet multiplicity categories to extract any potential signal contributions.
- No significant deviation from background expectation.
- Highest excess at ~230 GeV in $SR_b^{\mu\mu}$ not statistically important (only 0.3 σ global significance).
- Set model independent limits separately in the two categories.
 - Avoid assumptions on the mix of processes.

Signal model:

 Low mass vector (Z') and scalar (Φ) resonances which couple directly to quark-antiquark pairs.

Experimental signature:

- Low mass boosted dijet with large ISR, reconstructed as a large-radius jet with 2-prong substructure.
- High p_T (> 500 GeV) jet \rightarrow meet trigger thresholds \rightarrow probe low masses \rightarrow unique sensitivity for $m \leq 300$ GeV

- Leading graph-based jet tagger in CMS (ParticleNET) identifies 2-prong substructure.
 - Further categorization to light quark (SR1) and b -quark (SR2) decays.

Analysis strategy:

- Main observable: jet soft-drop mass (m_{SD}) → invariant mass of the jet constituents after removing soft and wide-angle radiation.
- Simultaneous fit across 5 p_T bins, quark flavor categories (SR1, SR2) and Run2 years.

- CMS-EXO-24-007 Brand new results! Dominant backgrounds & prediction: QCD multijet ($\sim 85\%$) \rightarrow Data-driven estimation using differential ABCD method Prediction of **Batio** of Polynomial in (mep.p.) OCD OCD in parametrizing residual entering SR SR/CR data-MC QCD in bin i (~1%) differences in situ $N_{\rm SR}^i = N_{\rm CR}^{\rm data,i} R_{\rm SR/CR}^{{\rm MC},i} TF_{\rm MC}(p_T^i,\rho^i) TF_{\rm res}(p_T^i,\rho^i)$ Polynomial in (msp.p.) Number of parametrizing residual data events in sculpting in QCD MC CB in bin i $TF(p_T, \rho) = \sum_{k=0}^{n_{\rho}} \sum_{l=0}^{n_{\rho_T}} a_{k,l} \left[b_{k,n_e}(\rho) b_{l,n}(p_T) \right] = b_{\nu,n}(x) = {n \choose 2} x^{\nu} (1-x)^{n-\nu}$
- W/Z (qq), Z(bb) (~13%) tt, single top (~2%)
 - Estimated from MC.

 $\rho = 2log\left(\frac{m_{SD}}{n}\right)$

Search for paired dijet resonances

CMS-EXO-21-010

Experimental signature:

 Four resolved jets, forming two equal mass dijet pairs.

Dominant background:

QCD multijet production

Signal model:

• Massive scalar diquark decaying to a pair of vector-like quarks, each decaying to a ug pair.

Background prediction:

 Four-jet mass is fitted simultaneously in bins of m
{jj}/m{4j} with multiple parametric functions, utilizing the discrete profiling method (envelope).

<u>Results:</u>

Largest excess corresponds to the two isolated events at ~ 8 TeV: 3.9σ (1.6σ) local (global) significance.

Summary

- Searches for low and high mass resonances were presented:
 - No significant deviations from SM so far, except for an interesting excess at 8 TeV in the paired dijet analysis that is being followed up with Run3 data.
 - Try to maximize the discovery potential (limits in case of no excess) in each channel (e.g. in different production modes and masses of Z').
 - > Probe previously unexplored regions and new final states.
- Aim for maximum sensitivity:
 - > Data driven background predictions wherever possible.
 - New methods, ML techniques (see talks from <u>Javier M. Duarte</u> and <u>Manuel</u> <u>Sommerhalder</u>).
- Review paper on dark sectors:
 - Covering Run1 to Run3 analyses.
 - > New results, combination of already existing ones and re-interpretations.
- Hopefully, Run3 data and HL-LHC will allow us to fully exploit the discovery potential.

Thank you for your attention!

The research project was co-funded by the Stavros Niarchos Foundation (SNF) and the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the 5th Call of "Science and Society" Action Always strive for excellence – Theodoros Papazoglou" (Project Number 20593).

Back up slides

CMS

CMS-EXO-21-015

Search for DY $Z' \rightarrow \tau \tau$

Ilias Zisopoulos - ICHEP 2024, Prague

CMS-EXO-22-006

BFF cuts:

- Signal characterized by low p_T^{miss} and hadronic activity.
- $p_T^{miss}/m_{\mu\mu}$: suppresses $t\bar{t}$ due to real neutrinos
- *H_T L_T* : Scalar sum of hadronic minus leptonic *p_T*, SM backgrounds (DY and *tt̄*) prefer balanced types of momenta

Search for $Z' \rightarrow \mu\mu$ associated with b – jets (high mass)

Signal model:

- BSM neutral vector boson Z' with $m(Z') \in [0.35, 2.5]$ TeV
- Z' coupling to b and s.

Experimental signature:

- High p_T dimuon pair in the final state with at least 1 tight b-jet.
- $N_b = 1, N_b \ge 2$ categories.
- f_{2b} = relative fraction of signal events with $N_b \ge 2$

• The scalar (Φ) and pseudoscalar (A) bosons couple to quarks with a coupling given by $g_{q\Phi}$ and g_{qA} times the SM Yukawa couplings, respectively, and decay dominantly to $b\bar{b}$.

Dijet summary plot

EXO summary plots

Search for paired dijet resonances

Entries

10³

 10^{2}

10

m₄ [GeV]

- Interesting isolated event recorded by the ATLAS experiment (10.1103/PhysRevD.108.112005).
 - > Motivated by this ATLAS event, and the 3rd isolated CMS event at ~ 6 TeV, the analysis is being extended by searching for broader resonances as well.

Search for paired dijet resonances (non-resonant part)

CMS-EXO-21-010

Experimental signature:

- Four resolved jets, forming two equal mass dijet pairs.
- Non-resonant in four-jet mass but resonant in average dijet mass.

- Signal model:
- Pair production of RPV top squarks, each decaying to a pair of ds quarks.

Background prediction:

• Average dijet mass is fitted simultaneously in bins of \overline{m}_{jj}/m_{4j} with multiple parametric functions, utilizing the discrete profiling method (envelope).

Results:

• Largest excess corresponds to a resonance mass of $0.95 \text{ TeV}: 3.6\sigma (2.5\sigma)$ local (global) significance.

Discrete profiling method

- The envelope method considers the choice of the functional form as a discrete nuisance parameter, which is profiled in an analogous way to continuous nuisance parameters.
- An envelope of the NLL curves is created that considers all different background function forms.
- The NLL minimization can dynamically switch between the (three) possible functional forms as a function of signal strength.