

(on behalf of the CMS Collaboration) **Rutgers, The State University of New Jersey**

Searches for vector-like quarks at CMS experiment

Prafulla Saha

17-24th July. 2024

Overview

- Theoretical motivation for vector-like quarks
- Production and decay modes
- Overview of the CMS search program
- Searches on single production
- Searches on pair production
- **Future prospects for VLQ searches at the HL-LHC**
- Conclusion

References:

- 1. EXO-23-006 (Submitted to Phys. Rept.)
- 1. <u>B2G-21-007</u> (10.1007/JHEP09(2023)057)
- 2. <u>B2G-19-001</u> (submitted to PRD)
- 3. <u>B2G-21-014</u> (submitted to PRD),
- 4. <u>B2G-20-011</u> (<u>10.1007/JHEP07(2023)020</u>)
- 5. <u>FTR-22-002</u>

Motivation

After the discovery of Higgs boson, the SM is complete as a low-energy effective theory Describe all fundamental particles and their interactions At high energies, quantum loop corrections to the Higgs boson self-energy tend to diverge. We are still left with the "hierarchy problem" particles, provides a feasible solution

- Various physics theories beyond the SM theories (Little Higgs, Composite Higgs etc.) predict additional

Motivation

After the discovery of Higgs boson, the SM is complete as a low-energy effective theory Describe all fundamental particles and their interactions At high energies, quantum loop corrections to the Higgs boson self-energy tend to diverge. We are still left with the "hierarchy problem" particles, provides a feasible solution

- Such a new particles are a vector-like quarks
- As singlets, T and B are introduced with electrical charges of +2/3 and -1/3
- Doublets and triplets incorporate two additional particles: $X_{5/3}$ (charge +5/3) and $X_{4/3}$ (charge -4/3).
- The dominant decay modes of the VLQs are to third-generation SM quarks
- Time to utilize precise SM measurement tools to probe these BSM physics

- Various physics theories beyond the SM theories (Little Higgs, Composite Higgs etc.) predict additional

VLQ production @ LHC

Strong production

- Production depends in strong coupling constant (α_{s}) and the mass of T (M_{T})
- Cross section is only depend on T mass, less model dependent.

VLQ production @ LHC

Strong production

- Production depends in strong coupling constant (α_{s}) and the mass of T (M_{T})
- Cross section is only depend on T mass, less model dependent.

Electroweak production

Only one heavy particle is produced, relatively heavy VLQ masses can be explored
 Cross section dependent on the couplings of the VLQ to third-generation quarks, κ_T
 The coupling κ_T can significantly change based on the choice of the VLQ mass and

Makes the study of the both production mode important

Overview of the CMS search program

Production mode	Decay mode	Channel	
$T\overline{T}$	bW, tH, tZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$	
$B\overline{B}$	tW, bH, bZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$	
$X_{5/3}\overline{X}_{5/3}$	tW	1ℓ , SS 2ℓ	
$Y_{4/3}\overline{Y}_{4/3}$	bW	1ℓ	Pair production
T	tΖ	bqqℓℓ, bqq bb, bqq vv	
	tH	bqqγγ, bqq bb	
	bW	b ℓv	
В	bH	b bb	
	tW	bqq lv, blv qq, bqq qq	
X _{5/3}	tW	bqq lv, blv qq, bqq qq	
Y _{4/3}	bW	bℓv	Single production

Combination of Analyses: (Released in May 2024)

- searches targeting pair production $B\bar{B}$ events.
- searches focusing on single T events.

Run II : $\sqrt{s} = 13 \,\text{TeV}$ $Ldt = 138 \,\text{fb}^{-1}$

Dedicated analysis for each production modes and VLQs of all flavors.

Single production

Under the Narrow Width Approximation ($\Gamma/M_{T'} < 10 - 15$ %) the cross section ~q

become only function of κ_T .

Analyses are designed using different width approximations: Narrow Width Approximation and width approximations of 10, 20, and 30%, considering different values for $\kappa_{\rm T}$.

Τ	tΖ	bqqℓℓ, bqq bb, bqq
	tH	bqqγγ, bqq bb
	bW	b ℓv
В	bH	b bb
	tW	bqq lv, blv qq, bqq
X _{5/3}	tW	bqq lv, blv qq, bqq
Y _{4/3}	bW	b ℓv Single
and the second		Characteristic Sector and Sector S

Single production

 \blacktriangleright Under the Narrow Width Approximation ($\Gamma/M_{T'} < 10-15\,\%$) the cross section $\,{}^{\rm Q}$

become only function of κ_T .

Analyses are designed using different width approximations: Narrow Width Approximation and width approximations of 10, 20, and 30%, considering different values for $\kappa_{\rm T}$.

Τ	tΖ	bqq $\ell\ell,$ bqq bb, bqq
	tH	bqq $\gamma\gamma$, bqq bb
	bW	bℓv
В	bH	b bb
	tW	bqq lv, blv qq, bqq
X _{5/3}	tW	bqq lv, blv qq, bqq
Y _{4/3}	bW	b ℓν Single

Single production (T \rightarrow tH \rightarrow bqq/b $\ell \nu \gamma\gamma$)

Usage of well-established $H \rightarrow \gamma \gamma$ tools

- Diphoton invariant mass $(m_{\gamma\gamma})$ as the main observable
- MVA is used to reject the SM Higgs and non-resonant backgrounds

Signal and SM Higgs Model:

- Modeled from MC sample
- $m_{\gamma\gamma}$ distribution is fitted with a sum of gaussians

Background Model:

- Modeled from data for $100 < m_{\gamma\gamma}$ <180 GeV
- Functions used for background fit: Exponentials, power laws, polynomials, and Laurent series

Singlet T masses are excluded up to 960 GeV under NWA

10.1007/JHEP09(2023)057

Despite the low $H \rightarrow \gamma \gamma$ branching fraction (0.2%), provided the best constraints

Single production (T \rightarrow tH/tZ \rightarrow bgg bb)

- singlet with narrow width approximation in the mass range [600,1200] GeV.
- Observable: resonant peak in the reconstructed five-jet mass distribution
 - T quark candidates are reconstructed using a multistep χ^2 minimization technique.
- Base line event selection: \geq 6 jets out of which \geq 3 are b-tagged jets

Five-jet invariant mass distributions

No statistically significant excess observed over the background

Single production (T \rightarrow tH/tZ \rightarrow bgg bb)

- singlet with narrow width approximation in the mass range [600,1200] GeV.
- Observable: resonant peak in the reconstructed five-jet mass distribution
 - T quark candidates are reconstructed using a multistep χ^2 minimization technique.
- Base line event selection: \geq 6 jets out of which \geq 3 are b-tagged jets

Five-jet invariant mass distributions

B2G-19-001, submitted to PRD

No statistically significant excess observed over the background

quark production (tH and tZ)

Obtained a stronger limit by a factor of three than <u>10.1007/JHEP01(2020)036</u>

Single production (T)

Upper limits on single T quark production crossection obtained by different analyses under NWA

EXO-23-006 (Submitted to Phys. Rept.)

Statistical combination:

For NWA

$$T \rightarrow tZ$$

$$tZ \rightarrow bqq \nu\nu$$

$$tZ \rightarrow bqq bb$$

$$T \rightarrow tH$$

$$tH \rightarrow bqq bb$$

$$tH \rightarrow bqq \gamma\gamma$$

Single production (T)

Upper limits on single T quark production crossection obtained by different analyses under NWA

Combination improved the limit compared to the individual analysis

For decay width of $\Gamma/m_T = 5, 10, 20$ and 30%, T quark is excluded up to a mass of 1.20, 1.06, 1.25, and 1.36 TeV

EXO-23-006 (Submitted to Phys. Rept.)

Statistical combination:

For NWA

Pair production

- Pair production of T, B, $X_{5/3}$ and $Y_{4/3}$ quarks via. gluon fusion has been studied
- Exploit the presence of t quarks and W, Z, or Higgs bosons in the decay chain

All-hadronic final state

- Boosted event shapes tagger/DEEPAK8 algorithm are used in identifying large-radius jets light-quark/gluon, b quark, t quark, and W, Z, and Higgs boson jets

Three final states containing charged electrons or muons

Single lepton channel

- Sensitive to all TT decay modes, as well as $B \rightarrow tW$.
- Same-sign dilepton channel
 - Primarily sensitive to $T \rightarrow tH (H \rightarrow WW)$ decays

Multilepton channel

Primarily sensitive to contributions from T \rightarrow tZ and B \rightarrow tW

Production mode	Decay mode	Channel	
$T\overline{T}$	bW, tH, tZ	$0\ell, 1\ell, OS 2\ell, S$	S 2 <i>l</i> , 3 <i>l</i>
$B\overline{B}$	tW,bH,bZ	$0\ell, 1\ell, OS 2\ell, S$	S 2 <i>l</i> , 3 <i>l</i>
$X_{5/3}\overline{X}_{5/3}$	tW	1ℓ , SS 2ℓ	
$Y_{4/3}\overline{Y}_{4/3}$	bW	1ℓ	Pair production

Pair production

- Pair production of T, B, $X_{5/3}$ and $Y_{4/3}$ quarks via. gluon fusion has been studied
- Exploit the presence of t quarks and W, Z, or Higgs bosons in the decay chain

All-hadronic final state

- Boosted event shapes tagger/DEEPAK8 algorithm are used in identifying large-radius jets light-quark/gluon, b quark, t quark, and W, Z, and Higgs boson jets

Three final states containing charged electrons or muons

Single lepton channel

- Sensitive to all TT decay modes, as well as $B \rightarrow tW$.
- Same-sign dilepton channel
 - Primarily sensitive to $T \rightarrow tH (H \rightarrow WW)$ decays

Multilepton channel

Primarily sensitive to contributions from T \rightarrow tZ and B \rightarrow tW

Production mode	Decay mode	Channel	
$T\overline{T}$	bW, tH, tZ	$0\ell, 1\ell, OS 2\ell, S$	S 2 <i>l</i> , 3 <i>l</i>
$B\overline{B}$	tW, bH, bZ	0ℓ , 1ℓ , OS 2ℓ , S	S 2l, 3l
$X_{5/3}\overline{X}_{5/3}$	tW	1ℓ , SS 2ℓ	
$Y_{4/3}\overline{Y}_{4/3}$	bW	1ℓ	Pair productio

Discuss briefly in today's talk

Pair production (BB)

- Search of B in the mass range [1000,1800] GeV.
- Reconstructed m_{VLO} distribution is used as the observable.
- A modified χ^2 metric, to associate an event to a given decay mode and assign jets to a parent particle.

Background estimation:

- Leptonic: Drell–Yan dilepton production in association with jets
- Hadronic: Quantum chromodynamics multijet events
- Background estimations are done from the control samples in data

Highly complex search, covering a larger number of possible final states

B2G-20-014 (submitted to PRD)

Jet	Leptonic	Fully hadronic
multiplicity	category	category
3	bHbZ,bZbZ	
4	bHbZ, bZbZ	bHbH, bHbZ, bZbZ
5		bHbH, bHbZ, bZbZ, bHtW
6		bHbH, bHbZ, bZbZ, bHtW

No statistically significant excess over the background expectations.

Pair production (BB)

Upper limits on pair **B** quark production crossection obtained by different analyses under different BR assumption.

Channels combined

Hadronic, single-lepton, dilepton (SS and OS), and multilepton

B2G-20-014 (submitted to PRD), EXO-23-006 (Submitted to Phys. Rept.)

Pair production (BB)

Upper limits on pair **B** quark production crossection obtained by different analyses under different BR assumption.

In the pair production, B quark of masses below 1.49 TeV are excluded **Combination could extends exclusion limit across all scenarios of branching fractions**

B2G-20-014 (submitted to PRD), EXO-23-006 (Submitted to Phys. Rept.)

Future prospects for VLQ searches at HL-LHC

- Physics capabilities of the Phase-2 upgrade of CMS for the **HL-LHC** have been studied
- Improved coverage and precision with new tracker detector
 - Identification of b quarks and hadronic decays of boosted particles within jets using track and vertex information.

With 3000 fb^{-1} of data, the discovery of T quark with a 5σ significance may be achieved for masses up to ~1.5 TeV.

Summary

- VLQs are a viable extension to the SM and we carry out a broad search program at CMS
- No statistically significant excess is observed in any of the searches for VLQ.
- There are still unexplored regions of parameter space
 - Nonminimal VLQ extensions such as decays of VLQs to scalar or pseudoscalar bosons
 - Exploring VLQ production modes such as electroweak pair production
 - Expanding the searches assuming a finite decay width.
- A detailed review of the VLQ searches has been released and submitted (May 2024) to Phy. Rev. for publication. EXO-23-006
- Continue efforts in innovating analysis techniques will further enhance the sensitivity
- Stay tuned for many more measurements from Run 3 and beyond!

Thank You

Back Up

1.1

Observed and expected 95% CL upper limits on the coupling strength $\kappa_{\rm T}$ for single T quark production

Pair production (TT)

Three final states containing charged electrons or muons **Single lepton channel:** 1 lepton, > 3 AK8 jets

Train an MLP for discrimination tt, W+jets background, or VLQ signal events.

Same-sign dilepton channel: 2 SS leptons, > 4 AK4 Jets

 \blacktriangleright H_{T}^{lep}

Multilepton channel: <u>3</u> leptons, > 3 AK4 Jets

$$S_{\rm T} = \sum p_{\rm T}^{\rm jets} + \sum p_{\rm T}^{\rm leptons} + p_{\rm T}^{\rm miss}$$

Upper limits on pair T quark production crossection obtained under different BR assumption.

No significant excess over the background expectations.

Pair production of T quarks with masses below 1.48 - 1.54 TeV are excluded, depending on the BR.

The analysis does not discriminate between jets from b and b quark - the signal process can be interpreted as $Y_{4/3}Y_{4/3}$ production. - $Y_{4/3}$ quarks are excluded with masses below 1.48 - 1.54 TeV