

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Bundesministerium für Bildung und Forschung

Searches for new resonances coupling to third generation quarks at CMS

Finn Labe (Universität Hamburg) on behalf of the CMS Collaboration

20.07.2024 | ICHEP 2024 Prague

2

This presentation: overview of results since ICHEP 2022 with 2016 – 2018 (run 2) CMS data!

→ Utilize jet substructure to search for new physics

Third generation quarks could be a window to new physics

- Many models predict new heavy particles at the TeV scale
 - Lorentz-boosted decay products

Introduction

- b quarks and boosted t quarks have distinctive signatures

Other related presentations:

- Searches for VLQs
- Searches for LQs
- Res. to Z, W and H
- Res. to two Higgs

20.07.24

Finn Labe | ICHEP 2024

(13 TeV)

Jet classification

b-jet identification

- Usually small-radius jets
- DeepJet^[1]: Deep learning approach to classify jets by flavor

Efficiency 80

0.6

0.4

0.2

200

CMS Simulation Preliminary

 $N_{top-particle} \ge 4, p_{_T} > 30 \text{ GeV}$ - ΔR(top, HOTVR) < 600 GeV / p

-- ∆R(top, AK8) < 0.8</p>

200 400 600 800 1000 1200 generator top-particle p₊ [GeV]

HOTVR top quark reconstruction efficiency

[2] CMS collaboration JINST 13 (2018) 05, P05011 [3] E. A. Moreno et.al. Eur. Phys. J.C 80 (2020) 1.58

[1] E. Bols et.al. JINST 15 (2020) 12, P12012

[4] H. Qu, L. Gouskos Phys.Rev.D 101 (2020) 5, 056019

5] T. Lapsien et.al. Eur. Phys. J.C 76 (2016) 11, 600

[6] CMS Collaboration CERN-CMS-DP-2024-038

 α/α

- Cut-based approaches:
 - N-subjettiness τ_N , soft-drop mass m_{SD}
- Machine-learning based approaches^[4]
- Dedicated jet algorithm: HOTVR^[5,6]

h/W/Z→qq

W- and t-jet identification

t→Wq→qqc

CMS result summary

CMS result summary

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state $\sqrt{s} = 13$ TeV

CMS Collaboration, CMS-PAS-B2G-21-005

- Excited states of bottom quarks predicted in compositeness models
 - Analyzing right-handed (RH), left-handed (LH) and vector-like b*
 - Different analysis channels: fully hadronic, leptonic W, leptonic t
- Reconstruction of the b* from its decay products
 - **b-tagged** small-radius jet with **DeepJet**
 - W-tagged large-radius jet with τ_2/τ_1 and m_{SD}
 - Lepton and \vec{p}_T^{miss}

- Main SM backgrounds in signal region: tt and QCD
 - Estimating $t\bar{t}$ using control region defined by τ_3/τ_2 and m_{SD}
 - Estimating **QCD using data** from control regions, defined by τ_2/τ_1

- Setting b* mass exclusion limits:
 - **2.4 TeV** (LH)
 - **2.8 TeV** (RH)
 - 3.1 TeV (vector-like)

20.07.24

CMS b* result summary

Search for a heavy resonance decaying into a top quark and a W boson at √s = 13 TeV in the fully hadronic final state

CMS Collaboration, JHEP 12 (2021) 106

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at √s = 13 TeV

CMS Collaboration, JHEP 04 (2022) 048

CMS result summary

10

JHEP 05 (2024) 046

Strategy: Reconstruction of W' from decay products
Lepton, p_T^{miss} and small- & large-radius jets

 $W' \rightarrow tb (1\ell): overview$

- Categorization with **b-tagged jets** using DeepJet:
 - Control region (0 b-jets), 3 signal regions (1 or 2 b-jets)
- Estimating dominant backgrounds from data
 - Using sub-regions based on M_t and m_{SD} of b-quark associated large-radius jet

JHEP 05 (2024) 046

- Simultaneous maximum likelihood fit of three signal regions
 - Largest excess at 3.8 TeV, 1% width, RH: 2.6 (2.0) σ local (global)

Many hypotheses tested, first ever probe of both W' width and chirality

CMS-PAS-B2G-22-005

- Top quark partner predicted in many BSM theories
 - Could solve the Higgs mass naturalness problem
- Excited top quark t* characterized by decay: t* → tg
 - Search for **pair production** $t^*\bar{t}^* \rightarrow tg\bar{t}g$ (single ℓ)
 - Different spin scenarios possible: spin ¹/₂ and spin ³/₂

 $t^*t^* \rightarrow tgtg: overview$

- Final state similar to $t\bar{t}$, with two additional jets
 - Mass reconstruction challenging: instead use energy sum S_T as sensitive variable

 $S_T = p_T^\ell + p_T^{\text{miss}} + \sum_{T=1}^{\ell} p_T^{\text{miss}}$

- HOTVR jets: allow access to wide range of jet momenta, due to variable radius
- Event classification deep neural network (DNN):
 - Discriminating $t^* \bar{t}^*$ from $t\bar{t}$

 $t^*t^* \rightarrow tgtg: strategy$

- DNN inputs include jet substructure
- DNN S_T-sculpting to be avoided:
 - Weights remove S_T info from training
 - Creating decorrelated tagger by introducing a S_T -dependent threshold

CMS-PAS-B2G-22-005

15

techniques Mass exclusion limits

• Spin $\frac{3}{2}$: 1700 GeV

• Spin $\frac{1}{2}$: 1050 GeV

assuming 100% BR:

Improved sensitivity due to updated analysis

- Maximum likelihood fit in signal region
 - Estimating **non-top backgrounds from data** using transfer function from CR
- No deviation from SM predictions observed: setting upper cross-section limits

- Exciting physics with heavy resonances coupling to third generation quarks
 - Several new results with 2016 2018 (run 2) data
 - Jet substructure analysis crucial to new physics searches
- Stay tuned for future results!
 - More run 2 results on the way
 - Run 3 ongoing right now
- Great potential for new jet substructure analysis techniques

Backup

CMS result summary

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state $\sqrt{s} = 13$ TeV

CMS Collaboration, CMS-PAS-B2G-21-005

$b^* \rightarrow tW (t \rightarrow 1\ell)$: selection

- Cut-based selection steps:
 - Exactly one lepton: p_T > 53 GeV
 - At least one b-tagged AK4 jet (p_T > 30 GeV)
 - Exactly one W-tagged AK8 jet ($p_T > 200$ GeV)
 - Lepton-jet 2D isolation
 - $\Delta R(j_b, j_W) > 0.8$ to remove boosted top quark events
- Signal region: $\tau_2/\tau_1 < 0.4$ or 0.45 (2016 or 2017-2018), $65 < m_{SD} < 105$ GeV
- $t\bar{t}$ control region: $\tau_3/\tau_2 < 0.6$, $105 < m_{SD} < 220$ GeV

$b^* \rightarrow tW (t \rightarrow 1\ell)$: background estimate

- Background estimation using ABCD method
 - Muon channel sidebands: τ_{21} and 2D isolation variable
 - Electron channel sidebands: \(\tau_{21}\) and \(N_B\)
- Constructing likelihood in five regions (4 from ABCD and $t\bar{t}$ CR = E)

$$\mathcal{L} = \prod_{i}^{N_{\text{bins}}^{\ell,\text{year}}} \prod_{r}^{\text{ABCDE}} P\left(n_{r,i} \middle| \text{QCD}_{r,i} + \sum_{k} \text{Bkg}_{r,i}^{k} + \mu \text{Sig}_{r,i}\right)$$

- $QCD_{r,i}$ yield parameters related by $QCD_{B,i} = QCD_{A,i} * QCD_{D,i}/QCD_{C,i}$
- Final QCD yield in region B (SR) obtained in simultaneous fit

$b^* \rightarrow tW (t \rightarrow 1\ell)$: complete results

Finn Labe | ICHEP 2024

CMS result summary

$W' \rightarrow tb$ (1 ℓ): selection & reconstruction

- Cut-based selection steps:
 - Exactly one lepton: $p_T > 55$ GeV (muon) or $p_T > 50$ GeV (electron), $I_{mini} < 0.1$
 - At least two AK4 jets ($p_T > 300 \text{ GeV}$, $p_T > 150 \text{ GeV}$)
 - At least two AK8 jets ($p_T > 170 \text{ GeV}$)
 - $p_T^{\text{miss}} > 120 \text{ GeV}$
- Reconstruction criteria, applied to b-jets if two or more, otherwise all jets:
 - Top jet j_t criteria: M_t close to world average, min($\Delta R(j_t, \ell)$), sub-leading jet
 - W' jet $j_{W'}$ assignment criteria: highest p_T jet that is not j_t

 $I_{\min} = \frac{S_I(R)}{p_{T}^{\ell}}, \text{ with } R = \frac{10 \text{ GeV}}{\min(\max(p_{T}^{\ell}, 50 \text{ GeV}), 200 \text{ GeV})}$

$W' \rightarrow tb (1\ell): LH results$

- Expected and observed cross section exclusion limits
 - Evaluating different W' width
 - Assuming left-handed W'

10-1

→ tb) [pb]

10-1

$W' \rightarrow tb (1\ell): RH results$

- Expected and observed cross section exclusion limits
 - Evaluating different W' width
 - Assuming right-handed W'

→ tb) [pb]

` ∧ ↑

- dd)ο

10

10-2

10⁻³

(10⁴ [bp]

⊼ ↑

d(bb

10

10-2

10

10²

10

Overview on the cross-section exclusion limits for LH (left) and RH (right).

Red numbers show regions excluded when comparing to predicted cross-sections.

28

t*t* → tgtg: selection

- Single lepton trigger (μ or e)
- Exactly one lepton (μ or e)
- ≥ 4 AK4 jets
- ≥1HOTVR jet
- MET > 50 GeV
- ≥ 1 medium DeepJet b-tag
- Custom lepton isolation
- *S_T* > 500 GeV

t*t* → tgtg: background estimation I

- Using a transfer function fit to a MC ratio to estimate non-top backgrounds
 - Procedure performed for both SR (for statistical analysis) and VR (for validation)

t*t* → tgtg: background estimation II

Background estimation functions for electron (left) and muon channel (right)

t*t* → tgtg: spin ½ limits

