

Search for new resonances decaying into two Higgs bosons at CMS

- 18 24 July 2024, Prague, Czech Republic
- Chayanit Asawatangtrakuldee (Chulalongkorn University)
 - on behalf of the CMS Collaboration

Introduction

- present data compatible with a scalar particle spin 0 and even parity of mass $m_H \sim 125.2 \text{ GeV}$
- several open questions require a deeper understanding of the Higgs boson
- Large amount of LHC data exploited since Run 2 and now Run 3 is more than half-way recorded
 - Higgs boson could be a probe to explore new physics
 - opens new window in exploration of the Higgs sector
- Many BSM theories predicted resonant HH production
 - Warped Extra Dimension (WED)
 - a narrow spin-0 (Radion) a spin-2 (KK-Graviton) lacksquare
 - Extended Higgs Sector : 2HDM, 2HDM+S, TRSM
 - Supersymmetric Models : MSSM, NMSSM \bullet

• 12 years since the discovery, properties & couplings of the SM Higgs boson extensively studied at the LHC

Search for new resonances decaying into two Higgs bosons at CMS

$X \rightarrow HH/YH \rightarrow \gamma\gamma\tau\tau$

new

- Motivated by Warped Extra Dimensions and Extended Higgs sector models
 - heavy Higgs can decay to lighter Higgs
- HH $\rightarrow \gamma\gamma\tau\tau$ has small branching fraction but clean signatures (non-resonant not included here)
- four channels: $X^{(0)} \to HH$, $X^{(2)} \to HH$, $X \to Y(\tau\tau)H(\gamma\gamma)$, $X \to Y(\gamma\gamma)H(\tau\tau)$
- Narrow width resonance searches
- $X \rightarrow HH$ for 260 < m_X < 1000 GeV
- $X \rightarrow Y(\tau \tau / \gamma \gamma) H(\gamma \gamma / \tau \tau)$ for 50/70 < m_V < 800 GeV
- Parametric NN is trained using multiple mass hypotheses vs backgrounds for each search channel
 - pNN output served for event categories
- Signal extraction is performed on $m_{\gamma\gamma}$ distribution

$X \rightarrow HH/YH \rightarrow \gamma\gamma\tau\tau$

new

- Main backgrounds from $\gamma\gamma$ +jets (non-resonant) and single-H production (resonant)
- A maximum likelihood fit on $m_{\gamma\gamma}$ distribution is done for each probed mass and event category
- Some deviations from background-only hypothesis are observed in $X \rightarrow YH$ channels
 - $X \rightarrow Y(\tau \tau)H(\gamma \gamma)$: 2.6 σ (2.2 σ) local (global) significance at (m_X, m_Y) = (320, 60) GeV
 - $X \rightarrow Y(\gamma\gamma)H(\tau\tau)$: 3.4 σ (0.1 σ) logal (global) significance at $(m_X, m_Y) = (525, 115)$ GeV

chayanit@cern.ch

$X \rightarrow HH \rightarrow bbWW$

- Motivated by Warped Extra Dimensions and Extended Higgs sector models
- HH → bbWW channel has the second largest combined branching fraction
 - single-lepton ($b\bar{b}\ell\nu q\bar{q}$) and di-lepton ($bb\ell\nu\ell\nu$) final states (non-resonant not shown here)
- Narrow width resonances for mass 250 900 GeV
- Multi-class DNN to classify events according to processes
- Signal extraction by simultaneous fit to DNN discriminant distributions

$X \rightarrow HH \rightarrow bbWW$

- Compared to Warped Extra Dimension models (bulk radion and graviton)

chayanit@cern.ch

• Upper limits for X \rightarrow HH cross section between 250 – 900 GeV for spin-0 and spin-2 assumption

$X \rightarrow HH/YH \rightarrow bb\gamma\gamma$

- two real singlet fields, and WEDs models (HH resonance)
- Signal extraction is performed on $(m_{\gamma\gamma}, m_{ij})$ plane

<u>JHEP 05 (2024) 316</u>

Motivated by NMSSM: MSSM extended by one more complex singlet, TRSM: SM extended by

- BDT (NN) scores to separate signals and non-resonant (resonant) backgrounds
- Six BDT training accounts for different signal m_X - m_Y mass ranges
 - 3 event categories based on BDT output

$X \rightarrow HH/YH \rightarrow bb\gamma\gamma$

- A simultaneous two-dimensional (2D) fit to $(m_{\gamma\gamma}, m_{ij})$ system in all categories
- (2.8σ) is observed for $m_{\rm X}$ = 650 GeV and $m_{\rm Y}$ = 90 GeV
 - coincides with a similar excess observed in H $\rightarrow \gamma\gamma$ (<u>arXiv:2405.18149</u>)

• The largest deviation from background-only hypothesis with local (global) significance of 3.8σ

Combination of X → HH/YH

• All searches are performed by assuming narrow-width approximation

Model	Process	Links
Warped Extra Dimension Spin-0 radion Spin-2 graviton & Extended Higgs Sector	$X \rightarrow HH \rightarrow 2b \ 2W \ (resolved)$	arXiv:2403.09430 (submitted to JHEP)
	X → HH → 2b 2W (merged)	<u>JHEP 05 (2022) 005</u>
	$X \rightarrow HH \rightarrow multileptons$	JHEP 07 (2023) 095
	X → HH/YH → 2b 2 τ	<u>JHEP 11 (2021) 057</u>
	X → HH/YH → 2b 2γ	<u>JHEP 05 (2024) 316</u>
	X → HH/YH → 2b 2b	<u>Phys. Lett. B 842 (2023) 137392</u>
Extended Higgs Sector	$A \rightarrow ZH \rightarrow 2\ell 2\tau$	<u>JHEP 03 (2020) 065</u>
	$A \rightarrow ZH \rightarrow 2\ell/2\nu 2b$	EPJC 79 (2019) 564

<u>chayanit@cern.ch</u>

Search for new resonances decaying into two Higgs bosons at CMS

 $X \rightarrow VH$ already covered by Daniel Hundhausen (previous talk)

Combination of X → HH/YH

- X denotes as spin-0 radion in WED and new scalar boson in extended Higgs sector models
- G denotes as spin-2 graviton in WED

Search for new resonances decaying into two Higgs bosons at CMS

https://www.hepdata.net/record/146897

• Y denotes as additional boson in NMSSM/TRSM

Interpretations – Warped Extra Dimension

The strongest exclusion limits of about 12 TeV expected and 16 TeV observed are reached near $m_R = 1.2$ TeV

chayanit@cern.ch

Interpretations – Extended Higgs Sector

chayanit@cern.ch

Search for new resonances decaying into two Higgs bosons at CMS

arXiv:2403.16926

12

Effects of finite width and interference

 $m_{\rm X}$, sin α , and $\lambda_{\rm HHX}$ of the interference ratio

$$R_{\text{int}} = \frac{\sigma^{\text{full}} - (\sigma^{\text{resonant-only}} + \sigma^{\text{nonresonant}})}{\sigma^{\text{resonant-only}} + \sigma^{\text{nonresonant}}}$$

chayanit@cern.ch

Search for new resonances decaying into two Higgs bosons at CMS

arXiv:2403.16926

Summary

- CMS has published many results on
- Machine learning techniques play crucial role in various aspects
 - object reconstruction (DeepJet, DeepTau, ParticleNet,...)
 - signal vs background discriminants
 - etc.
- Small excess observed but no strong deviation from SM
 - more data will be needed to clarify their nature
- Many more results to come Stay Tuned for Run 3 analyses!

"Search for new resonances decaying into two Higgs bosons"

arXiv:2403.16926

<u>chayanit@cern.ch</u>

Extended Higgs Sector

Extend SM with *singlets*

- Additional **one real singlet** leads to new scalar X ($m_{\rm X} \ge$ or $\le m_{\rm H}$)
 - using the singlet model for a finite width study in this report
 - three free parameters (Z₂ symmetry) : $\tan\beta$, mixing angle α , and $m_{\rm X}$
 - At low sin α , X \rightarrow HH is dominant

• Two real singlets (TRSM)

- second new scalar Y
- $X \rightarrow HH, X \rightarrow YH$, and $X \rightarrow YY$ become possible

Extend SM with *doublets*

- - H (CP-even)

 - 2HDMs :
 - $X \rightarrow HH$ (scalar)

2HDM type 1 $m_x = 500 \text{ GeV}$ 2HDM type 1 $\cos(\beta - \alpha) = 0.02$ ഫ 20 0.5 (HH 18 Ian LB 18 0.4 × 10 16 14 12 0.3 10 0.2 0.1 -0.04 -0.02 0.02 0.04 300 400 500 600 700 800 9001000 0 m_x [GeV] $\cos(\beta - \alpha)$ 2HDM type 2 m $_{\sim}$ = 500 GeV 2HDM type 2 $\cos(\beta - \alpha) = 0.02$ ഫ 20 (HH 0.25 18 18 an 16 0.2 X 14 12 0.15 10 0.1 0.05 -0.04 -0.02 0 0.02 0.04 300 400 500 600 700 800 9001000 m_x [GeV] $\cos(\beta - \alpha)$ Type I **Type II** Type X $\Phi_{I} \qquad \Phi_{2}$ $\Phi_1 \qquad \Phi_2$ Φ_{I} d, e u, e u, d u charged c, μ s, **µ** С C, S fermions t, b b, τ t, τ 16

• Two Higgs doublet models (2HDMs)

• 5 Higgs bosons : H^{\pm} , A (CP-odd), X and

• 4 types (Type I, Type II (MSSM), Type X, Type Y) with natural flavor and CP conservation, depending on how two doublets couple to the SM particles

• Heavy Higgs bosons X and A decays in

• $A \rightarrow ZH$ (CP-odd scalar)

Adding additional singlet or doublet:

• defines the N2HDMs and 2HDM+S

• $X \rightarrow YH$ and $X \rightarrow YY$ are dominant

Search for new resonances decaying into two Higgs bosons at CMS

arXiv:2403.16926 (submitted to Physics Reports)

Warped Extra Dimension (WED)

- The model predicts the existence of a narrow spin-0 (Radion) and a spin-2 (KK-Graviton)
- Different benchmarks are considered for KK-Graviton : RS1 and bulk-RS
 - the BR to HH is among the dominant on the bulk-RS scenario
- For large radion masses, the branching fraction to HH is approximately 25%

chayanit@cern.ch

Interpretations – Extended Higgs Sector

chayanit@cern.ch

Effects of finite width and interference

• $m_X = 500 \text{ GeV}$, $\sin \alpha = 0.03$, $\lambda_{HHX} = -600 \text{ GeV}$, $\kappa_{\lambda} = 1.0$, and $R_{int} = \pm 10\%$

chayanit@cern.cn

