## ATLAS Searches for Vector-like Quarks and Leptoquarks

Krisztian Peters (DESY) On behalf of the ATLAS Collaboration

ICHEP, Prague, 20.07.2024





### **VLQ searches in a nutshell**

**Overview and motivation** 

#### Color triplet spin-1/2 fermions with equal right- and left-handed SU(2) chiral transformations

- Common in many BSM theories, particularly in strongly-coupled composite Higgs theories
- Could mitigate Higgs mass fine-tuning, hence focus so far on decay to 3rd gen. quarks



**Complex** final state, **H/W/Z/top/b tagging** and **S**<sub>T</sub> **important discriminants** against backgrounds. Analysis channels defined by detector signature (typically number of jets and leptons or large  $E_T^{miss}$ )

# **Vector-like quarks**

Search for pair-production of vector-like quarks in lepton+jets final states containing at least one b-tagged jet using the Run 2 data from the ATLAS experiment



Search for **pair-produced** vector-like quarks coupling to **light quarks** in the **lepton plus jets** final state using 13 TeV *p p* collisions with the ATLAS detector



Search for single vector-like *B* quark production and decay via  $B \rightarrow bH(b\bar{b})$  in *pp* collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector

39/fb



## VLQ pair production with lepton+jets and b-jets

Main target  $TT \rightarrow WbWb$  (but also sensitive to other VLQs and decay modes)

#### Optimised for *T* decay to a *W* and *b*-quark

- One *W* decays to  $e/\mu$ , the other hadronically
- Suppress with  $e/\mu$  selection hadronic backgrounds
- Large W to had. BR for second VLQ decay

## Event signature and selection (focus on *T*-quark masses above 1.3 TeV)

- One high- $p_T e$  or  $\mu$  and large  $E_T^{miss}$
- *W*-tagged large-R jet
- Multiple small-R jets, at least one *b*-tagged

## Reconstructed mass of leptonic *T* decay used for final signal extraction



#### Analysis strategy for the Wb+X final state

Main backgrounds and data-driven corrections

**Pair** small-R jets with *W* boson candidates such that **difference** between **two** *T***-quark masses minimised** 

Additional W+jets and tt reweighing regions for data driven corrections



## **Significantly improved limits**

**Dominated by statistical uncertainty** 



Larger data set and 20% improvement from slicing into SR1/SR2, improved W-boson tagging

**Test other BRs** with the requirement  $B(T \rightarrow Wb) + B(T \rightarrow Ht) + B(T \rightarrow Zt) = 1$ 

Although designed for *TT*, also **sensitive for** *BB* **production** with similar exclusion plots

## **VLQ pair production coupling to light quarks**

Main target  $TT \rightarrow WqWq$  (one W decays to  $e/\mu$ , the other hadronically)

Predicted by various **BSM models** with extended symmetries, **not** directly motivated by **hierarchy problem** 

Similar event selection and analysis strategy to *Wb+X* final state search, yet **no b-jet tagging** 

**Two signal regions** separated with  $\Delta \phi$  cut at 2.75 between lead jet and  $E_T^{miss}$ 

Only **signal regions** included in the **likelihood fit**, CRs used to validate background modelling, which are corrected in reweighing regions



arXiv:2405.19862 Submitted to Phys. Rev. D.

## First LHC Run 2 search for VLQ with light quark decays

Strong improvement on latest (Run 1) limits



**Test other BRs** with the requirement  $B(Q \rightarrow Wq) + B(Q \rightarrow Hq) + B(Q \rightarrow Zq) = 1$ 

#### Single VLB production with decay to b-quarks

Main target  $B \rightarrow bH(bb)$ , dominant at high masses (pair production reach to ~1.2 TeV)

Coupling between VLB quarks and *W*,*Z*,*H* bosons regulate the production XS and decay width Different coupling ratios for multiplet scenarios, but all scale with the universal coupling strength  $\kappa$ 



## Analysis strategy for the *bH(bb)* final state

Multijet production overwhelming background, data-driven estimate



Jet in the forward region

Large-R jet, containing two b-tagged track jets

B-tagged small-R jet, opposite to large-R jet, both high pT (> 400/480 GeV)

+Additional QCD multi-jet rejection cuts

VLB mass for signal extraction

#### SR defined with a tight requirement on the Higgs candidate mass

• Per-cent level signal efficiency due to tight kinematic selection (e.g. large-R jet pT and tripple b-tag)

SR-like categories with 1 b-tagged track jet in large-R jet and/or outside Higgs mass range are used to correct and validate background model



### **Results for single VLB production**

#### Increase mass reach up to 2 TeV



#### Uncertainties from ABCD residual correlation and shape correction have largest impact on sensitivity

# Leptoquarks

**Combination** of searches for **pair-produced leptoquarks** at  $\sqrt{s} = 13$  TeV with the ATLAS detector



#### **Leptoquark searches**

With decays to 3rd gen. Quarks

LQs couple simultaneously to quarks and leptons and may explain recent B-meson anomalies or muon (g - 2)Either scalar or vector particles, have fractional charge and carry color, B and L quantum numbers Scalar pair production cross section depends only on LQ mass, sensitivity to lower couplings and masses Similar analysis concepts to VLQ searches. Results primarily limited by statistical uncertainties



### **Combination of pair-produced LQ searches**

9 independent searches with decay to 3rd gen. quarks and leptons of all generations

Sets of these analyses are combined for exclusions limits on 3rd gen. and mixed scalar LQs Orthogonality given through lepton selection requirements, residual overlap has negligible impact Channels sensitive in complementary regions, improved exclusion range for most BR values





Phys. Lett. B 854 (2024) 138736

**DESY.** | ATLAS Searches for Vector-like Quarks and Leptoquarks | Krisztian Peters, 20.07.2024

#### **Overview of ATLAS LQ results**

#### Different LQ models and production modes, decays to all lepton generations explored



#### **Conclusions**

#### **ATLAS searches for VLQs and LQs**

A very broad programme, yet no evidence for new phenomena so far

#### New ATLAS results on pair and singly produced VLQs

First combination of pair produced LQs, with significant improvements over individual searches

Many opportunities on non-standard production and decays, which are not yet explored as comprehensively Still great potential for discovery with expected improvements in performance and analysis techniques



# Thank you

## **VLQ pair production**

**Overview of ATLAS results** 

| Pair production           | Most sensitive decay |                   |
|---------------------------|----------------------|-------------------|
| Analysis 36/fb            | $T\bar{T}$ decay     | $B\bar{B}$ decay  |
| H(bb)t + X [16]           | HtHī                 | -                 |
| $W(\ell \nu)b + X$ [17]   | $WbWar{b}$           | -                 |
| $W(\ell \nu)t + X$ [18]   | -                    | $WtW\overline{t}$ |
| $Z(\nu\nu)t + X$ [19]     | $ZtZ\overline{t}$    | -                 |
| $Z(\ell\ell)t/b + X [20]$ | $ZtZ\overline{t}$    | $ZbZar{b}$        |
| Tril./s.s. dilepton [21]  | <i>HtHī</i>          | $WtW\overline{t}$ |
| Fully hadronic [22]       | <i>HtHī</i>          | HbHb              |



Phys. Rev. Lett. 121 (2018) 211801

#### Contact

| <b>DESY.</b> Deutsches | Krisztian Peters                 |
|------------------------|----------------------------------|
| Elektronen-Synchrotron | DESY-ATLAS                       |
|                        | E-mail: krisztian.peters@desy.de |
| www.desy.de            | Phone: +49 40 8998 3740          |
|                        |                                  |