

Stealth/RPV SUSY Searches with CMS

Justin Anguiano on behalf of the CMS Collaboration

International Conference on High Energy Physics July 18, 2024

July 2024

2

Overview

• Presenting searches involving RPV and/or low $p_T^{
m miss}$ <u>SUS-19-001</u>

Search for stealth SUSY with diphotons, jets and low MET

SUS-23-001

Search for Stealth/RPV stops using Double DisCo neural network method

<u>SUS-23-015</u>

Search for RPV SUSY in trilepton + jets final states

Introduction

- Searching for SUSY is well motivated
 - Can solve the hierarchy problem and offers potential DM candidates
- Typical SUSY signatures involve high p_T^{miss} from a massive invisible particle
 - No significant evidence has been observed
- Alternative SUSY signatures can involve low p_T^{miss}

Stealth scenario

- Light hidden sector with single scalar boson S and nearly mass degenerate \$\tilde{S}\$
 \$\tilde{S} \rightarrow \tilde{G}S\$ where \$\tilde{G}\$ is ~massless and stable (LSP)\$
- $_{\circ}$ Small $\Delta(m_{ ilde{S}},m_S)$ suppresses final state $p_T^{
 m miss}$

RPV scenario

 $\circ p_T^{
m miss}$ source in R-parity conserved models, $ilde{\chi}_1^0$ undergoes decay to 3 light quarks

Search for stealth SUSY with diphotons, jets and low MET

• Strong production of $\tilde{q}\tilde{\tilde{q}}, \tilde{g}\tilde{g}$ to $\tilde{\chi}_1^0$ with subsequent decay through stealth sector

4

Search for stealth SUSY with diphotons, jets and low MET

138 fb⁻¹ (13 TeV

= (1150, 200) Ge

3000

138 fb (13 TeV

nominal = 1.65

Predicted background (post-fit) . Data

2500

2000

Based on observable
$$S_T = p_T^{miss} + \sum p_T^\gamma + \sum p_T^{
m jets}$$

Preselection:

 $N_{\gamma}=2;\,\,m_{\gamma\gamma}>90\,{
m GeV}
onumber \ N_{
m jets}\geq 2;\,\,S_T>1200\,{
m GeV}$

Control Regions:

 $N_{
m jets}=2~:{
m data}{-}{
m driven}~S_T$ shape sideband for high $N_{
m jets}$ $1200 < S_T < 1300:{
m data}{-}{
m driven}$ normalization sideband per $N_{
m jets}$ Signal Regions:

 $N_{
m jets} = 4, 5, \geq 6 ext{ in bins of } S_T > [1300, 1400, \ldots, \geq 2500]$

Background Prediction:

$$b(N_{jets}, S_{T} \operatorname{bin} i) = N^{\operatorname{evts}}(N_{jets}, 1200 < S_{T} < 1300 \operatorname{GeV})$$

$$\times f^{\operatorname{AGK}}(S_{T} \operatorname{bin} i)$$

$$\times r(N_{jets}, S_{T} \operatorname{bin} i), \longrightarrow$$

$$template correction$$

$$MC \text{ based shape}$$

$$template correction$$

3500

 S_{τ} (GeV)

Ninte = 4

1500

s / (100 GeV)

CMS

Events/GeV

10-1

 10^{-2}

 10^{-3}

10-4

ops: events street pkg breet pkg 0.25

Search for stealth SUSY with diphotons, jets and low MET

- 95% CL U.L. on the gluino and squark production cross sections in stealth scenarios
- Excludes gluino (squark) up to 2150 (1850) GeV

CMS

- Top squark production with decay through stealth sector
- Top squark pair production with $\tilde{\chi}_1^0$ cascade decay

- Looking for both an R-parity violating (RPV) and a Stealth SUSY signature (SYY)
- The final state of both signal models is tt+ jets with little to no p_T^{miss}
- The analysis is split into three channels: zero lepton (0L), one lepton (1L), and two lepton (2L).

The primary challenge of this analysis is minimizing and estimating the tt+jets background event yield in the search regions.

The analysis strategy is as follows:

- Estimate tt+jets from data with simultaneous fit for signal + tt+jets using ABCDisCoTEC method
- Extract the prediction for the QCD multijet background from a dedicated control region
- Predict tt + X, Other, and Signal from simulation
- Combine the three analysis channels in a simultaneous multi-bin fit separated by jet multiplicity

Events

 $\times 10^3$

CMS

35 Preliminary

138 fb⁻¹ (13 TeV)

Other

tī + X

QCD multijet

--- RPV m- = 400 GeV (5×σ-)

--- BPV m -= 800 GeV (100×σ.)

 Produces two independent discriminating quantities for tt+jets vs stealth (RPV) signals

138 fb⁻¹ (13 TeV)

tt + iets

Other

tī + X

QCD multije

--- BPV m-= 400 GeV (5×σ.)

BPV m = 800 GeV (100vg

Events

CMS

CMS

Search for Stealth/RPV stops using Double DisCo neural network

- Signal and tt + jets estimated separately in each Njets bin with simultaneous fit to data in four 'ABCD' bins of S_{NN,1} vs. S_{NN,2} plane
- S_{NN,1} and S_{NN,2} are independent variables that discriminate signal from tt+ jets generated using ABCDisCoTEC neural network
- Floating parameters of fit are tt+ jets event yields in each ABCD bin (N_A, N_B, N_C, N_D) and signal strength
- Fit relies on key 'ABCD' constraint that $N_A = \kappa (N_B N_C / N_D)$, which is appropriate given independence of $S_{NN,1}$ and $S_{NN,2}$
 - \succ κ is correction factor obtained from simulation

Figure: ABCDisCoTEC neural network generates two independent signal vs. background discriminators which are the basis variables for the ABCD background estimation

- Background-only post-fit plots shown for the three channels
- Good agreement seen for all optimizations and signal models between background only fits and data

- Three channel combination limit plots shown for the RPV (left) and SYY (right) signal models
- No significance excess of events observed above the expected background for either model
- Mass exclusion limits set at 700 GeV for the RPV model and 930 GeV for the Stealth SYY model

CMS

• Degenerate wino-like Neutralino/Chargino production with unstable light Neutralino

$$egin{aligned} ilde{\chi}_2^0 & o Z ilde{\chi}_1^0\,;\; ilde{\chi}_1^\pm & o W^\pm ilde{\chi}_1^0 \ & ilde{\chi}_1^0 & o \operatorname{uds}\ & ilde{\chi}_1^0 & o \operatorname{uds} \end{aligned}$$

- Target final states consist of three-leptons and up to six jets
- One, two, and four lepton events to calibrate and probe for supersymmetric production of events with three leptons

$$S_T = p_T^{ ext{miss}} + \sum p_T^\ell + \sum p_T^{ ext{jets}}$$

 $egin{aligned} & ext{Preselection}\ &N_\ell=1,2,3,4\,;\;N_{ ext{jets}}>2\ &N_{ ext{b-jets}}\geq 1\;(ext{RPVb})\,;\;N_{ ext{b-jets}}=0\;(ext{RPVq})\ & ext{Bins in:}\;S_T,\,M_T,\,N_\ell,\,N_{ ext{jets}},\,N_{ ext{b-jets}} \end{aligned}$

- Many dedicated control regions to constrain background in corresponding N_{ℓ} , N_{jets} , $N_{\text{b-jets}}$ bins
- Poor Modeling in MC with high jet multiplicity
 - Corrections to SR high jet multiplicities are propagated from CR

	Bin No.	N _ℓ	MOSSF	Nj	Nb	Additional selection criteria			
R	1	4	2OnZ	7	-	-			
	2	4	OnZ	-	0	-			
	3	4	OnZ	-	>0	$S_T > 350 \text{ GeV}$ $76 < M(3\ell) < 106 \text{ GeV}$ no OSSF lepton pairs			
	4	3	BelowZ	-	-				
	5	3	-	-	1 2				
	6	3	AboveZ	0	-				
	7	3	AboveZ	>0	-				
	8-10	3	OnZ	0	-	3 M _T bins (GeV): 0, 30, 90, 150			
	11-13	3	OnZ	1	-	3 M _T bins (GeV): 0, 30, 90, 150			
	14-30	3	OnZ	2	0	17 S _T bins (GeV): 150-1650 (15 × 100 GeV), 1850, 2050			
	31-47	3	OnZ	3	0	17 ST bins (GeV): 250-1750 (15 × 100 GeV), 1950, 2150			
	48-61	3	OnZ	4	0	14 S _T bins (GeV): 300-1500 (12 × 100 GeV), 1800, 2100			
	62-68	3	OnZ	>4	0	7 S _T bins (GeV): 400-1800 (7 × 200 GeV)			
	69-82	3	OnZ	2	>0	14 ST bins (GeV): 150-1350 (12 × 100 GeV), 1550, 1750			
	83-97	3	OnZ	3	>0	15 S _T bins (GeV): 200-1500 (13 × 100 GeV), 1700, 1900			
	98-110	3	OnZ	4	>0	13 S _T bins (GeV): 350-1350 (10 × 100 GeV), 1550, 1750 1960			
	111-119	3	OnZ	>4	>0	9 S _T bins (GeV): 400-2200 (9 × 200 GeV)			

Table 4: A summary of 1L, 2L, 3L and 4L control regions as defined in this analysis.

	CR name	OSSFn	MOSSE	Ni	Nb	Other selections
	1LW	-	-	-	0	$70 < M_{\rm T} < 110 { m GeV}$
	1L tŦ	-	-	>1	>0	$70 < M_{\rm T} < 110 { m GeV}$
	2L DY	OSSF1	OnZ	-	-	-
	2L tt	OSSF0	-	-	-	$S_{\rm T} > 300$ GeV, eµ opposite-sign
\mathbf{R}	$3LZ\gamma$	OSSF1	BelowZ	-	0	$76 < M_{3\ell} < 106 \text{ GeV}$
	3L OnZ	OSSF1	OnZ	< 2	-	-
	3L MisID	OSSF1	OnZ	< 2	-	$M_{\rm T} < 50 { m GeV}$
	3L MisID	OSSF1	AboveZ	-	-	-
	3L MisID	OSSF0	12	<u>1 — </u>	_	M _{SSSF} OnZ veto
	3LWZ	OSSF1	OnZ	< 2	0	$M_{\rm T} > 50 { m GeV}$
	4L ttZ	OSSF1	OnZ	-	>0	$S_{\rm T} > 350 {\rm GeV}$
	4L ZZ	OSSF2	2OnZ	-	-	
	4L ZZ	OSSF2	1OnZ	-	0	

SI

• All SR bins are fit simultaneously in a binned maximum likelihood fit

• Data and post-fit model are in agreement across all SR categories

RPVb

- 95% CL U.L. for the RPVq and RPVb models
- RPVq exclusion of neutralino with masses up to 275 GeV
- RPVb exclusion of neutralino with masses up to 180 GeV

Summary

• Presented searches involving RPV/Stealth SUSY

Search for stealth SUSY with diphotons, jets and low MET

• compared to previously published results, achieved a $\approx 70\%$ improvement

Search for Stealth/RPV stops using Double DisCo neural network method

• previous search for these signatures observed a deviation with local significance of 2.8 standard deviations for a top squark mass of 400 GeV for the RPV model, which has not been confirmed by a new analysis

Search for RPV SUSY in trilepton + jets final states

- the first direct bounds on this new class of supersymmetric extension of the SM
- No significant excesses found for RPV/Stealth SUSY so exclusion limits have been set
- Searches continue into Run 3