

1

Stealth/RPV SUSY Searches with CMS

Justin Anguiano on behalf of the CMS Collaboration

International Conference on High Energy Physics July 18, 2024

• Presenting searches involving RPV and/or low p_T^{miss} [SUS-19-001](https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-19-001/index.html)

Search for stealth SUSY with diphotons, jets and low MET

[SUS-23-001](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-23-001/index.html)

Search for Stealth/RPV stops using Double DisCo neural network method

[SUS-23-015](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-23-015/index.html)

Search for RPV SUSY in trilepton + jets final states

Introduction

- Searching for SUSY is well motivated
	- \triangleright Can solve the hierarchy problem and offers potential DM candidates
- Typical SUSY signatures involve high p_T^{miss} from a massive invisible particle
	- \triangleright No significant evidence has been observed
- Alternative SUSY signatures can involve low p_T^{miss}

Stealth scenario

- Light hidden sector with single scalar boson S and nearly mass degenerate \tilde{S} $\tilde{S} \rightarrow \tilde{G}S$ where \tilde{G} is ~massless and stable (LSP)
- Small $\Delta(m_{\tilde{S}}, m_S)$ suppresses final state p_T^{miss}

RPV scenario

 δ p^{miss} source in R-parity conserved models, $\tilde{\chi}^0$ undergoes decay to 3 light quarks

Search for stealth SUSY with diphotons, jets and low MET

Strong production of $\tilde{q}\bar{\tilde{q}}$, $\tilde{g}\tilde{g}$ to $\tilde{\chi}_1^0$ with subsequent decay through stealth sector

4

Search for stealth SUSY with diphotons, jets and low MET

138 fb⁻¹ (13 TeV

Based on observable
$$
S_T = p_T^{miss} + \sum p_T^{\gamma} + \sum p_T^{jets}
$$

Preselection:

 $N_{\gamma}=2;\,\,m_{\gamma\gamma}>90\,\rm{GeV}$ $N_{\rm jets} \geq 2;~S_T > 1200\,{\rm GeV}$

Control Regions:

 $N_{\text{iets}} = 2$: data-driven S_T shape sideband for high N_{lets} $1200 < S_T < 1300:$ data-driven normalization sideband per $N_{\rm jets}$ Signal Regions:

 $N_{\text{jets}} = 4, 5, \geq 6$ in bins of $S_T > [1300, 1400, \ldots, \geq 2500]$

Background Prediction:

$$
b(N_{\text{jets}}, S_{\text{T}} \text{bin } i) = N^{\text{evts}}(N_{\text{jets}}, 1200 < S_{\text{T}} < 1300 \text{ GeV})
$$
\n
$$
\times f^{\text{AGK}}(S_{\text{T}} \text{bin } i)
$$
\n
$$
\times r(N_{\text{jets}}, S_{\text{T}} \text{bin } i)
$$
\n
$$
\text{MC based shape}
$$
\n
$$
\text{template correction}
$$
\n
$$
10^{-1}
$$
\

CMS

 10

Search for stealth SUSY with diphotons, jets and low MET

- 95% CL U.L. on the gluino and squark production cross sections in stealth scenarios
- Excludes gluino (squark) up to 2150 (1850) GeV

- Top squark production with decay through stealth sector
- Top squark pair production with $\tilde{\chi}^0_1$ cascade decay

- Looking for both an R-parity violating (RPV) and a Stealth SUSY signature (SYY)
- The final state of both signal models is $tt+$ jets with little to no p_T^{miss}
- The analysis is split into three channels: zero lepton (0L), one lepton (1L), and two lepton (2L).

The primary challenge of this analysis is minimizing and estimating the tt+jets background event yield in the search regions.

The analysis strategy is as follows:

- Estimate $tt+jets$ from data with simultaneous fit for signal + tt+jets using ABCDisCoTEC method
- Extract the prediction for the QCD multijet background from a dedicated control region
- Predict $tt + X$, Other, and Signal from simulation
- Combine the three analysis channels in a simultaneous multi-bin fit separated by jet multiplicity

NN automates ABCD background estimation

 \triangleright Produces two independent discriminating quantities for tt+jets vs stealth (RPV) signals

- Signal and $tt + jets$ estimated separately in each Njets bin with simultaneous fit to data in four 'ABCD' bins of S_{NN1} vs. S_{NN2} plane
- $S_{NN,1}$ and $S_{NN,2}$ are independent variables that discriminate signal from tt+ jets generated using ABCDisCoTEC neural network
- Floating parameters of fit are $tt+$ jets event yields in each ABCD bin (N_A, N_B, N_C, N_D) and signal strength
- Fit relies on key 'ABCD' constraint that N_A = κ ($N_B N_C/N_D$), which is appropriate given independence of S_{NN1} and S_{NN2}
	- \triangleright κ is correction factor obtained from simulation

Figure: ABCDisCoTEC neural network generates two independent signal vs. background discriminators which are the basis variables for the ABCD background estimation

- Background-only post-fit plots shown for the three channels
- Good agreement seen for all optimizations and signal models between background only fits and data

- Three channel combination limit plots shown for the RPV (left) and SYY (right) signal models
- No significance excess of events observed above the expected background for either model
- Mass exclusion limits set at 700 GeV for the RPV model and 930 GeV for the Stealth SYY model

Degenerate wino-like Neutralino/Chargino production with unstable light Neutralino

$$
\begin{aligned} \tilde{\chi}^0_2 \rightarrow Z\tilde{\chi}^0_1; \,\, \tilde{\chi}^{\pm}_1 \rightarrow W^{\pm}\tilde{\chi}^0_1 \\ \tilde{\chi}^0_1 \rightarrow \text{uds} \\ \tilde{\chi}^0_1 \rightarrow \text{udb} \end{aligned}
$$

- Target final states consist of three-leptons and up to six jets
- One, two, and four lepton events to calibrate and probe for supersymmetric production of events with three leptons

$$
S_T=p_T^{\rm miss}+\sum p_T^{\ell}+\sum p_T^{\rm jets}
$$

Preselection

 $N_{\ell} = 1, 2, 3, 4$; $N_{\rm jets} > 2$

 $N_{\text{b-jets}} \ge 1 \text{ (RPVb)}$; $N_{\text{b-jets}} = 0 \text{ (RPVq)}$

- Many dedicated control regions to constrain background in corresponding N_{ℓ} , N_{jets} , $N_{\text{b-jets}}$ bins
- Poor Modeling in MC with high jet multiplicity
	- Corrections to SR high jet multiplicities are propagated from CR

Table 4: A summary of 1L, 2L, 3L and 4L control regions as defined in this analysis.

S

All SR bins are fit simultaneously in a binned maximum likelihood fit

Data and post-fit model are in agreement across all SR categories

- 95% CL U.L. for the RPVq and RPVb models
- RPVq exclusion of neutralino with masses up to 275 GeV
- RPVb exclusion of neutralino with masses up to 180 GeV

Summary

● Presented searches involving RPV/Stealth SUSY

Search for stealth SUSY with diphotons, jets and low MET

compared to previously published results, achieved a \approx 70% improvement

Search for Stealth/RPV stops using Double DisCo neural network method

● previous search for these signatures observed a deviation with local significance of 2.8 standard deviations for a top squark mass of 400 GeV for the RPV model, which has not been confirmed by a new analysis

Search for RPV SUSY in trilepton + jets final states

- the first direct bounds on this new class of supersymmetric extension of the SM
- No significant excesses found for RPV/Stealth SUSY so exclusion limits have been set
- Searches continue into Run 3