Searches for supersymmetry in non-minimal models ICHEP July 18, 2024

Lauren Osojnak, University of Pennsylvania

On behalf of the ATLAS Collaboration

Outline

- ATLAS and Large Hadron Collider (LHC)
- Supersymmetry (SUSY)
- R-parity violation
- B L stop analysis: <u>arxiv</u>
- Multi-jet analysis: JHEP
- Conclusion

2

LHC

ATLAS

SUSY

Motivation for SUSY: the hierarchy problem, gauge coupling unification, dark matter, baryogensis, etc.

5

Non-minimal SUSY

- SUSY provides elegant solutions to several problems of the Standard Model
- SUSY is an important component of LHC physics program
- Limits on MSSM do not equate to limits on all of SUSY
- It is important and interesting to explore nonminimal SUSY models (*R*-parity violation, nonminimal-flavour-violating, etc.)

Jul 18, 2024 L. Osojnak 6

R-parity in SUSY

- Baryon (B) and lepton (L) number violating couplings arise naturally from SUSY
- *R*-parity: $R = (-1)^{3(B-L)+2s}$
- The most general gauge invariant and renormalizable SUSY super potential (W) would include R-parity violating (RPV) terms
- RPV may explain generation of neutrino masses and mixings as well as flavor anomalies

$$W = W_{MSSM} + W_{R_p},$$
 $W_{MSSM} = h_{ij}^e L_i H_1 \bar{E}_j + h_{ij}^d Q_i H_1 \bar{D}_j + h_{ij}^u Q_i H_2 \bar{U}_j + \mu H_1 H_2,$ $W_{R_p} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2.$

Lepton Number Violating

Baryon number violating

Jul 18, 2024
L. Osojnak

RPV decays

- R-parity conservation often invoked in SUSY "ad hoc" to prevent Baryon # violating and Lepton # violating terms; also to prevent proton decay
- If R-parity is conserved → Lightest Supersymmetric Particle (LSP) is stable → missing energy, dark matter candidate
- If R-parity is violated → LSP allowed to decay into only SM particles (proton still stable) → reconstructable signatures

Proton decay

$$\Delta B = \Delta L = 1$$
$$\Delta (B - L) = 0$$

8

RPV coupling

$$\Delta B = 1, \Delta L = 0$$
$$\Delta (B - L) = 1$$

Overview: stop search

- <u>B L Model</u> for stop motivated by University of Pennsylvania theorists; Marshall, Ovrut, Purves, Spinner, PLB 732 (2014) 325-329 <u>arxiv</u>
- Model adds local U(1) B L symmetry with righthanded neutrinos
- Experimental signature: 2 opposite charged leptons and 2 b-jets (fully reconstructable in ATLAS)
- Target Signal:
 - •2 opposite sign leptons (e or μ)
 - 2 jets (≥1 *b*-tag)

Figure: t and anti-t decay to charged lepton and b-quark through R-parity violating (RPV) coupling (λ')

Early Run 2 Analysis: ATLAS Collab, Phys. Rev. D 97 (2018) 032003

Full Run 2 Analysis: arxiv

9

Analysis Strategy: stop search

- Kinematic variables: H_T , m_{ll} , m_{asym} , m_{bl}
- $\cdot H_T$ is scalar sum of decay products
- Search for $\underline{\text{resonance}}$ in b-jet + lepton invariant mass distribution m_{bl}
- We utilize the *b*-jet + lepton pair's leading mass, sub-leading mass and rejected pairing

Jul 18, 2024 L. Osojnak 10

Fitting methods: stop search

- Variable bin-width signal region from optimization studies
- Two <u>exclusion fits</u> for each stop mass + lepton branching ratio combination: 15 bin flavor agnostic fit and 45 bin flavor aware

Results: stop search

- No excess above Standard Model found
- Improved from Early Run 2 limits:
 - 1400 GeV \rightarrow 1800 GeV for $\mathscr{B}(\tilde{t} \rightarrow b\mu) = 100\%$
 - 1500 GeV \rightarrow 1900 GeV for $\mathscr{B}(\tilde{t} \rightarrow be)$ =100%
 - 600 GeV \rightarrow 1100 GeV for $\mathscr{B}(\tilde{t} \rightarrow b\tau) = 90\%$

Jul 18, 2024 L. Osojnak 12

Overview: multi-jet search

- Experimental signature: 6 jets for direct decay model and 10 jets for cascade decay (fully reconstructable in ATLAS)
- Target Signal: at least 4 jets with $p_T > 50$ GeV and no leptons; events must pass H_T trigger
- Main background is QCD multi-jet which requires strong background suppression
- b-tagging selections are used to target third generation couplings

Figure: g[~] and anti-g[~] direct decay to 6 jets (left) and cascade decay to at least 10 jets (right) through RPV coupling (λ")

Run 1 Analysis: ATLAS Collab, Phys. Rev. D 93 (2016) 039901 Early Run 2 Analysis: Atlas Collab, Phys. Lett. B 785 (2018) Full Run 2 Analysis: Atlas Collab, JHEP 05 (2024) 003

Jet counting method: multi-jet search

Jet Counting Method: (both decays)

- 7 SRs requiring at least 7 high p_T jets create more more-model independent search strategy
- Background estimation of data and simulation from low jet p_T and low jet multiplicity o extrapolated to high
- C event-shape variable derived from linearized sphericity tensor to distinguish between signal and background

Mass resonance method: multi-jet search

Mass Resonance Method: (direct decay only)

- Reconstruct gluino mass with machine learning (ML) techniques
- Assign jets to correct gluino
- Mass resonance search in gluino mass spectrum
- Data-driven approach to estimate background

Figure: normalized average mass spectrum (m_{avg}) comparing the shapes of the reconstructed ML (solid) and target Monte-Carlo generated label (light) distributions.

Results: multi-jet search

- No excess above Standard Model found.
 - Direct gluino decay → excluded up to 1800 GeV
 - Cascade gluino decay → excluded up to 2340 GeV for a neutralino with 1250 GeV mass
 - Mass resonance method extends limits compared to jet counting method by ~200 GeV

Conclusions

- RPV SUSY models search in new areas of SUSY not previously explored in minimal models
- Limits improved with respect to previous iterations of these analyses
- Significant gain beyond increased data due to new analyses techniques
- New techniques (mass-resonance method) can be applied to future analyses, even beyond the demonstrated finals states!

Backup

UDB model: multi-jet search

Alternate Lepton flavors: stop analysis

