

Searches for electroweak production of supersymmetric particles with the ATLAS detector

Antonia Strübig

On behalf of the ATLAS Collaboration

ICHEP Prague 2024 18.07.2024

Introduction

- ATLAS has a large search program for electroweak SUSY but so far haven't discovered any Beyond the SM Physics yet
- Full Run 3 data set will only bring small improvement to significance
- We need to make good use of both Run 2 and Run 3 data
 - Employ new techniques/ideas for future and already ongoing analyses
- This talk will cover a subset of results with the complete Run 2 data set (140 fb⁻¹):
 - 1L + MET <u>SUSY-2023-01</u>
 - Multi-b-jets <u>SUSY-2020-16</u>
 - Photons + two b-jets <u>SUSY-2020-17</u>
 - Compressed spectra with soft displaced tracks <u>SUSY-2020-04</u>
 - Simplified model combination <u>SUSY-2020-05</u>
 - pMSSM scan <u>SUSY-2020-15</u>

See also the other ATLAS SUSY talks at ICHEP!

Electroweak SUSY

- SUSY postulates a superpartner with spin altered by 1/2 for each SM particle
- Offers solutions to open questions of the SM
 - hierarchy problem
 - fine-tuning of the Higgs mass
 - unification of fundamental interactions
- Provides good candidate for dark matter
 - \circ R-parity conserving models \rightarrow SUSY particles produced in pairs
 - in many models, the lightest stable particle (LSP) is the neutralino
 - model dependent limit on DM candidate

7.0	Model	S	ignatur	e j	`£ d1 [fb⁻	Mass limit	Reference
s	$\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0}$	0 e.μ mono-jet	2-6 jets 1-3 jets	E_T^{mis} E_T^{mis}	140 140	i [1x, 8x Depin.] 1.0 1.85 m(i ⁰) -400 GeV i [8x Depin.] 0.9 m(V)m(i ⁰) -5 GeV	2010.14293 2102.10874
clusive Searche	$\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}\bar{\chi}_{1}^{0}$	$0 \ e, \mu$	2-6 jets	E_T^{miss}	140	2.3 m(i [*])=0 GeV	2010.14293 2010.14293
	$\tilde{\chi}\tilde{\chi}, \tilde{\chi} \rightarrow q \bar{q} W \tilde{\chi}_1^0$	1 e, µ	2-6 jets		140	ē 2.2 miζ ⁰ <600 GeV	2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{\ell}_{1}^{0}$	ce, µµ	2 jets	Eriss	140	2.2 m) ² ₁ <700 GeV	2204.13072
	$gg, g \rightarrow qqWZV_1$	SS e,μ	6 jets	L7-	140	2 1.197 m(r) <000 GeV 2 1.15 m(g)-m(r) = 200 GeV	2008.06032 2307.01094
5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt\tilde{\chi}_{1}^{0}$	0-1 e,μ SS e,μ	3 b 6 jets	E_T^{mis}	140 140	ể 2.45 mi∛)-500 GeV ể 1.25 m(⋛)-600 GeV	2211.08028 1909.08457
	$\bar{b}_1\bar{b}_1$	0 e, µ	2 b	$E_T^{\rm miss}$	140	ຍັງ 1.255 mit ² i/<400 GeV 0.68 10 CeV - 4 mit ² i/<400 GeV	2101.12527 2101.12527
2 5	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\ell}_2^0 {\rightarrow} b h \tilde{\ell}_1^0$	0 e. µ	6 b 2 b	ET iss	140 140	Forbidden 0.23-1.35 Δm(ℓ ² ₀ , ² ₀)=130 GeV, m(ℓ ² ₀)=100 GeV 0.13-0.85 Δm(ℓ ² ₀ , ² ₀)=130 GeV, m(ℓ ² ₀)=100 GeV	1908.03122 2103.08189
Aug da	$\tilde{h}\tilde{h}, \tilde{h} \rightarrow t\tilde{\chi}_{1}^{0}$	0-1 e, µ	≥ 1 jet	Eriss	140	1.25 mit ²]=1.0eV	2004.14060, 2012.03799
bro a	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{t}_1^0$	1 c.µ	3 jets/1 b	E_T^{miss}	140	l ₁ Forbidden 1.05 m(k ⁰)=500 GeV	2012.03799, ATLAS-CONF-2023-0
g B	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau G$	1-2 r	2 jots/1 b	ETTitos ETTITOS	140	n Forbidden 1.4 m(t) =800 GeV	2108.07665
3ª	$\eta_{ll}, \eta \rightarrow c c_1 / c c, c \rightarrow c c_1$	0 e.µ	mono-jet	Etites	140	0.55 m(j,2)m(ž)=5GeV	2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{t}_2^0, \tilde{t}_2^0 \rightarrow Z/h \tilde{t}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1 \rightarrow Z$	1-2 e, µ	1-4 <i>b</i>	E_T^{miss}	140	in 0.067-1.18 m(t ²)=500 GeV	2006.05890
	$\tilde{x}_1^\dagger \tilde{x}_2^0$ via $W\!Z$	Multiple (/jet	s > 1 iet	Enio Fhio	140	2 ⁴ /ξ ⁶ 0.96 m(ξ ¹)=0, wino-bino (¹ /ξ ⁶ 0.205 m(ξ ¹)=0, wino-bino	2106.01676, 2108.07586
	$\hat{x}_{1}^{\dagger}\hat{x}_{1}^{\dagger}$ via WW	2 e.u	C i foi	Eniss	140	1 0.42 mič ² 1=0.win-bino	1908.08215
	$\hat{\chi}_1^* \hat{\chi}_2^0$ via Wh	Multiple <i>ℓ</i> /jet	5	Eriks	140	k ² /λ ² Forbidden 1.06 m(k ²)=70 GeV, wino-bino	2004.10894, 2108.07586
. 75	$\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}$ via $\tilde{\ell}_{L}/\tilde{r}$	2 e, µ		Erris	140	1.0 m((,t)=0.5(m((t))+m(t)))	1908.08215
аğ,	$t\bar{t}, \bar{t} \rightarrow t\bar{X}_1$ $\lambda = \lambda = \lambda = \lambda = t\bar{Y}_1^0$	27	0 jets	Enis	140	0.34 0.48 mp ² i=0 m ² i=0	AILAS-CONF-2023-029 1908.08215
0	(LR)LR (SO()	ce, µµ	≥ 1 jet	$E_T^{\rm friss}$	140	7 0.26 m(l)-m(l)	1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, µ	$\geq 3 b$ 0 jete	Etitos	140	\tilde{H} 0.94 BR($\tilde{c} \rightarrow k \tilde{c}$)=1	To appear
		0 e.µ :	≥ 2 large jet	s Eris	140	H 0.45-0.93 BR(ℓ ₁ ⁻ → ZG)-1	2108.07586
		2 e,µ	≥ 2 jets	E_T^{mas}	140	\hat{H} 0.77 BR $(\hat{t}_1^2 \rightarrow Z \hat{t}) = BR(\hat{t}_1^2 \rightarrow h \hat{t}) = 0.5$	2204.13072
s	Direct $\tilde{\chi}_1^* \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^*$	Disapp. trk	1 jet	E_T^{mas}	140	2 0.66 Pure Wino 1 0.21 Pure higgsino	2201.02472 2201.02472
200	Stable § R-hadron	pixel dE/dx		E_T^{miss}	140	ž 2.05	2205.06013
2 in	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{V}_1$	pixel dE/dx Displ. Jap		Entro	140	g [r(g) =10 m] 2.2 m(t ²)=100 GeV	2205.06013
BPV Loi	$tt, t \rightarrow t0$	Diaga. rep		toy .	140	τ 0.34 (t) = 0.1 m	2011.07812
		pixel dE/dx		ET	140	τ 0.36 τ(<i>b</i>) = 10 ns	2206.06013
	$\hat{\chi}_{1}^{\pm} \hat{\chi}_{1}^{\pi} / \hat{\chi}_{1}^{0}$, $\hat{\chi}_{1}^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e. µ	O into	cuis	140	R ⁺ /R ⁺ [BR(Zr)=1, BR(Ze)=1] 0.625 1.05 Pure Wino	2011.10543
	$\chi_1 \chi_1 / \chi_2 \rightarrow W W / Z U U v v$ $\delta \delta \rightarrow a a \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow a a a$	4 c.μ	≥8 jets	<i>L</i> 7	140	r (X ₁) 400 # (X ₁₀ # 0) 0.95 1.55 m((Y ₁)=200 GeV # [m(X ⁺ ₁)=50 GeV] 1.6 2.25 Large X ⁺ ₁₀	To appear
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	[K [*] ₁₂₂ =2e-4, 1e-2] 0.55 1.05 m(t ²)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{H}, \tilde{I} \rightarrow b \tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow b b s$		$\geq 4b$		140	Forbidden 0.95 m(t))=500 GeV	2010.01015
	$I_1I_1, I_1 \rightarrow DS$ $\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow a\ell$	2 e.u	2 jets + 2 h		36.7	r ₁ [qq, ht] 0.42 0.61 0.4.1.45 BB//→br/bd>20%	1710.07171 1710.05544
		1 µ	DV		136	$f_1 = [10 - 10 < \lambda'_{20} < 10 - 0, 30 - 10 < \lambda'_{20} < 30 - 0]$ 1.0 1.6 $BR(f_1 - q_2) = 100\%, \cos\theta_1 - 1$	2003.11956
	$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{*} \rightarrow bbs$	1-2 e, µ	≥6 jets		140	R ^a 0.2-0.32 Pure higgsino	2106.09609

- Electroweak SUSY (EWK-SUSY) well motivated by naturalness arguments and with many possible signatures at colliders
 - Less constrained than strong production, especially in mass degenerate regimes
 - Really challenging to probe due to small cross-sections and signatures similar to SM processes

EWK 1L

- First 1L + jets search using jet-substructure information + BDT to improve sensitivity
- Wino-like mass degenerate Chargino-Neutralino pairs decaying to bino-like LSPs via SM
 V,h boson
- Three sets of SRs all requiring one isolated lepton + max. three jets. Additionally:
 - C1C1-WW, C1N2-WZ SRs binned in mass with MET > 200 GeV + at least one large-R boson-tagged jet
 - C1N2-Wh SRs with exactly two b-jets and binned in output score of Boosted Decision Tree (BDT)
- Results:
 - \circ Weak observed limits due to 2.1 σ excess in SRMM-WZ bins
 - Similar weak observed limits in Wh channel due to small data excess, improvements driven by BDT

SUSY-2023-01

Multi-b

- GMSB scenario with neutralino decaying to nearly massless \check{G} via SM $h(\rightarrow$ bb) boson
- Search performed in two channels
 - High-mass (m(\check{H}) > 250 GeV): large MET+ MET trigger + at most 7 jets, at least 3 b-tagged
 - Low-mass (m(\check{H})<250 GeV): low MET+ b-jet triggers + at least four b-jets
- Relying on new techniques w.r.t. partial Run-2 analysis
 - Improved jet reconstruction and b-tagging
 - New b-jets pairing to Higgs boson
 - SRs of High-mass channel binned (x4) in BDTs output score to better discriminate signal from backgrounds

\rightarrow Full Run-2 update using new techniques to achieve highest sensitivity to date

 Largest excess of 1.9σ (2.6σ) local significance in High-Mass (Low-Mass) channel

SUSY-2020-16

Most sensitive limits to date to GMSB simplified models in
 130 GeV < m(H) <800 GeV mass window

Antonia Strübig

EW SUSY - ICHEP 2024

EWK photons + b-jets

- Provides complementary results to multi-b search by targeting different SM boson decays
- GMSB scenario complementary to previous one, targeting N1 decays via SM $h(\rightarrow \gamma\gamma/bb)$ or $Z(\rightarrow bb)$ bosons
- Events selected vetoing leptons and requiring exactly $2\gamma + 2b$ -jets in the **h** or **Z** mass windows
- Three non-overlapping signal regions defined to be sensitive to different masses and decay modes

\rightarrow Very good agreement with SM

<u>SUSY-2020-17</u>

Compressed spectra

<u>SUSY-2020-04</u>

 $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ [GeV]

EW S

- Higgsinos production, much lighter than gauginos, Higgsinos, Δm ≈0.4-1 GeV, c_τ ≈0.1-1mm
- Targeting final state with
 - ISR leading jet (p_{T} > 250 GeV)
 - Large MET(> 600 GeV)
 - 1 track with $2 < p_T < 5$ GeV, large d_0 significance (S(d_0) > 8)
- Backgrounds:
 - au decay tracks (W($\rightarrow au v$)):
 - MC scaled to data at higher track p_T
 - Non-prompt QCD tracks (Z($\rightarrow vv$), W($\rightarrow ev$))
 - Data-driven S(d₀)shape is the same in OL and 1L (W $\rightarrow \mu v$ events) control selection
- Two SR in S(d₀) (sensitive to lower/ higher Δm)
- Observed limit excludes higgsino gap up to ~170 GeV

Simplified models combination

- Generally extends sensitivity to NLSP/LSP masses by 100 GeV, improves cross-section upper limits by 15%-40%
- Simplified models of pure-wino or pure-higgsino NLSPs pair production decaying to LSPs via SM *V,h* bosons
- Using all available EW searches with 139 fb-1

Production mode	Wino $ ilde{\chi}_1^+ ilde{\chi}_1^-$	Wino $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$	Wino $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$	$\begin{array}{c} \text{Higgsino GGM} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1,2}^{0}, \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \end{array}$
Decay mode	$\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$	$ \begin{vmatrix} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0 \end{vmatrix} $	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \to h \tilde{\chi}_1^0 \end{array} $	$\tilde{\chi}^0_1 \to Z/h \tilde{G}$
SearchesAll Hadronic1L1Lbb2L Compressed2L0J $\Delta m > m(W)$ 2L0J $\Delta m \sim m(W)$ 2L2J 2τ 3LSS/3L4L	\checkmark \checkmark \checkmark		\checkmark \checkmark \checkmark \checkmark	✓ ✓ ✓

- Statistical independence checked by inspecting yields on data and simulations in SRs + CRs
- Combination performed for searches with overlap < 10%, otherwise search with best expected sensitivity is used
- Experimental systematics and theory uncertainties left uncorrelated

Antonia Strübig

Simplified models combination

• Overall improvements in cross-section upper limits from 15% to 40%

- Closes gap between individual searches, improves sensitivity to high mass
- Smooths out deficit/excess effects of individual searches

- Extends limits everywhere besidescompressed region
- Fully covers all branching ratio possibilities in gauge-mediatedSUSY-breaking (GMSB) scenarios

EW SUSY - ICHEP 2024

EWK pMSSM

Exclusion limits on "simplified models" (very small portion of the MSSM)

- If we think of using the Phenomenological MSSM:
 - "Only" 19 free parameters (thanks to CP-conserved, RPC, minimal flavour violation)
- Evaluate sensitivity of ATLAS EWK SUSY searches in broader SUSY

parameter space

- Randomly sample pMSSM parameters
- Re-interpret 8 Run-2 analyses on pMSSM models
- EWK scan targets electroweakinos (other sparticles decoupled)
- Highlight areas to be targeted with future searches
- Two scans performed:
 - General EWKino scan (squarks and slepton decoupled)
 - Bino-DM scan
 - A total of ~20000 models to study (after applying all constraints)
- Considering external constraints from:
 - Flavour, precision EWK and DM related measurements

Analysis	Relevant simplified models targeted				
FullHad	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ via WW				
1Lbb	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh				
2L0J	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ via WW, slepton pairs				
2L2J	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ				
3L	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$				
4L	Higgsino GGM				
Compressed	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$				
Disappearing-tr	rack Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_1^\pm \tilde{\chi}_1^0$				

Parameter	Min	Max	Note
$M_{\tilde{I}_1}$ (= $M_{\tilde{I}_2}$)	10 TeV	10 TeV	Left-handed slepton (first two gens.) mass
$M_{\tilde{e}_1} (= M_{\tilde{e}_2})$	10 TeV	10 TeV	Right-handed slepton (first two gens.) mass
$M_{\tilde{L}_2}$	10 TeV	10 TeV	Left-handed stau doublet mass
$M_{\tilde{e}_3}$	10 TeV	10 TeV	Right-handed stau mass
$M_{\tilde{Q}_1}$ (= $M_{\tilde{Q}_2}$)	10 TeV	10 TeV	Left-handed squark (first two gens.) mass
$M_{\tilde{u}_1}$ (= $M_{\tilde{u}_2}$)	10 TeV	10 TeV	Right-handed up-type squark (first two gens.) mass
$M_{\tilde{d}_1}$ (= $M_{\tilde{d}_2}$)	10 TeV	10 TeV	Right-handed down-type squark (first two gens.) mass
$M_{\tilde{O}_3}$	2 TeV	5 TeV	Left-handed squark (third gen.) mass
$M_{\tilde{u}_3}^{\tilde{u}_3}$	2 TeV	5 TeV	Right-handed top squark mass
$M_{\tilde{d}_3}$	2 TeV	5 TeV	Right-handed bottom squark mass
M_1	-2 TeV	2 TeV	Bino mass parameter
M_2	-2 TeV	2 TeV	Wino mass parameter
μ	-2 TeV	2 TeV	Bilinear Higgs boson mass parameter
M_3	1 TeV	5 TeV	Gluino mass parameter
A_t	-8 TeV	8 TeV	Trilinear top coupling
A_b	-2 TeV	2 TeV	Trilinear bottom coupling
A_{τ}	-2 TeV	2 TeV	Trilinear τ -lepton coupling
M_A	0 TeV	5 TeV	Pseudoscalar Higgs boson mass
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values

EW SUSY - ICHEP 2024

SUSY-2020-15

EWK pMSSM - Technical setup

- First generate pMSSM models and apply initial filters
- Perform particle-level categorization of models using SimpleAnalysis and pyhf
- For models deemed "ambiguous" detector-level MC samples are produced and processed using RECAST.

SUSY-2020-15

11

EW SUSY

EWK pMSSM - general scan

- For $m(\widetilde{\chi_1^0}) \le 100$ GeV, almost all are Bino-like LSP models
 - And ~50% are excluded by ATLAS
- For LSP mass ≤ 400 GeV, more than 50% excluded for Wino-like LSP models
 - Driven by disappearing track analysis.
- ATLAS exclude at least 50% of models with up to $m(\widetilde{\chi_1}^{\pm})=400 \text{ GeV}$
- There are unexcluded models even at low LSP masses

EWK pMSSM - Bino scan

• Models with Bino-like LSP typically overestimate the dark matter relic density, unless additional annihilation mechanisms are present:

 $\tilde{\chi}_{2}^{0}$ co. ann

 $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow Z h$

 $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow b \bar{b}$

 $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV$

- compressed mass splitting between LSP and $\widetilde{\chi}_2^0/\widetilde{\chi}_1^{\pm}$
- **Z/h** "funnel regions"
- Scan oversampling region with |M1| < 500 GeV (low-mass bino)

 $\tilde{\gamma}_{4}^{0}\tilde{\gamma}_{4}^{0} \rightarrow b\bar{b}$

 $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV$

A/H funne

 $\tilde{\chi}_{2}^{0}$ co. ann.

 ${\tilde \chi}^0_1 {\tilde \chi}^0_1
ightarrow Z h$

- **Z/h** "funnel region" almost completely excluded by ATLAS Run-2 data.
- Weaker ATLAS constraints at higher LSP masses.
- $\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}$ co-annihilation: dominant mode still viable

Antonia Strübig

Outlook

- For simplified SUSY models most interesting phase space regions are challenging to probe
- Motivates to use new techniques and explore different ideas
 - \rightarrow Great results and improvements already with the full Run 2 data set more to come with Run 3
- Combining results to improve reach
- Scanning vast parameter space to find currently non-excluded signatures

All analyses also providing results in various formats to make them more accessible to the whole HEP community
 ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM

A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and metanitos is presented. Results from eight separate ATLAS searches are considered, each using 140 for 1-d proto-protot to data a centre-6-metan senetrys of v_arT31 bit collected at the Large Hadron Collide ruling is second data-laking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-party conservation is second data-laking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-party conservation is assumed and the Eightes supersymmetric particle masses and are compared with limits frame related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits frame related measurements impact of ATLAS searches on parameters such as the datar hard relide data bits pri-dependent teathering cross-sections targeted by rule of datar matter detection experiments. The Higgs bosin and 2 bosin 'funnel regions', where a low-mass neutralino would not overstaurate the datargino example spect of article analysin-dependent teathering constraines. Constraints completely accluded by the considered constraints. Example spectar for non-accluded supersymmetric models with light relide note-anito and particle masses and presented.

