

Search for effective Lorentz and CPT violation using ZEUS data† **42nd International Conference on High Energy Physics**

Florian Lorkowski on behalf of the ZEUS collaboration

florian.lorkowski@physik.uzh.ch

University of Zürich

July 19, 2024

†[PRD 107, 092008 \(2023\).](https://doi.org/10.1103/PhysRevD.107.092008) arXiv:[2212.12750](https://arxiv.org/abs/2212.12750)

[Motivation](#page-1-0) [Lorentz invariance and effective Lorentz violation](#page-1-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Lorentz invariance](#page-1-0) [Sidereal osc.](#page-4-0) **[Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Summary](#page-23-0)**

▶ Lorentz invariance: observer and particle transformations are indistinguishable

[Motivation](#page-1-0) [Lorentz invariance and effective Lorentz violation](#page-1-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Lorentz invariance](#page-1-0) [Sidereal osc.](#page-4-0) **[Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Summary](#page-23-0)**

- ▶ Lorentz invariance: observer and particle transformations are indistinguishable
- \blacktriangleright In Lorentz-violating theories, the two transformations lead to measurable differences

[Motivation](#page-1-0) [Lorentz invariance and effective Lorentz violation](#page-1-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Lorentz invariance](#page-1-0) [Sidereal osc.](#page-4-0) **[Theory](#page-6-0)** [Experiment](#page-10-0) [Analysis](#page-11-0) **[Summary](#page-23-0)**

- ▶ Lorentz invariance: observer and particle transformations are indistinguishable
- \blacktriangleright In Lorentz-violating theories, the two transformations lead to measurable differences
- ▶ Typical scenario: dark-matter halo in the galactic disk
- Apparent Lorentz-violation due to dark-matter flux through laboratory
- ▶ Universe as a whole can still Earth
be Lorentz invariant

[Motivation](#page-1-0) [Sun-centred frame and sidereal oscillations](#page-4-0)

- Florian Lorkowski 2024-07-19
- [Motivation](#page-1-0) [Lorentz invariance](#page-1-0) [Sidereal osc.](#page-4-0) **[Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Summary](#page-23-0)**
- \triangleright Movement of sun around galactic centre is negligible
	- \rightarrow consider sun-centred frame (SCF)
- ▶ Position of earth irrelevant due to translational invariance
	- \rightarrow consider just rotation of earth

[Motivation](#page-1-0) [Sun-centred frame and sidereal oscillations](#page-4-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Lorentz invariance](#page-1-0) [Sidereal osc.](#page-4-0) **[Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) [Summary](#page-23-0)

- Movement of sun around galactic centre is negligible
	- \rightarrow consider sun-centred frame (SCF)
- ▶ Position of earth irrelevant due to translational invariance \rightarrow consider just rotation of earth
- ▶ Laboratory system is connected to SCF via time-dependent Lorentz transformation
- ▶ Time-independent effects in SCF lead to time-dependent effects in laboratory frame \rightarrow measurable effective Lorentz violation
- \blacktriangleright Look for periodic effects with sidereal period of $T_p = 23h 56m$ in

Perspective of earth-based observer:

*X*ˆ

*Y*ˆ

*Z*ˆ

[Theoretical overview](#page-6-0) [Standard-Model Extension](#page-6-0)

[Search for](#page-0-0) effective Lorentz violation

- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0) SMF** [DIS](#page-7-0) [DIS under SME](#page-9-0) **[Experiment](#page-10-0)** [Analysis](#page-11-0) **[Summary](#page-23-0)**
- **Standard-Model Extension** (SME): effective field theory to parameterise Lorentz- and CPT-violating effects†
- \triangleright Contains all terms that break Lorentz invariance, about half of them break CPT
- ▶ Consider extensions to Fermion part of Lagrangian:

$$
\mathcal{L}_{\psi} = \frac{1}{2} \overline{\psi} \left(i \not{D} + \hat{Q} \right) \psi + \text{h.c.}
$$
\n
$$
\hat{Q} = -\left[\frac{a^{\mu}}{2} \right] \gamma_{\mu} - \left[\frac{b^{\mu}}{2} \right] \gamma_{5} \gamma_{\mu} + \dots
$$
\n
$$
+ \left[\frac{c^{\mu \nu}}{2} \right] \gamma_{\mu} i D_{\nu} + \left[\frac{d^{\mu \nu}}{2} \right] \gamma_{5} \gamma_{\mu} i D_{\nu} + \dots
$$
\nCPT even, renormalisable\n
$$
- \frac{1}{2} \left[\frac{a^{(5)\mu \nu \lambda}}{2} \right] \gamma_{\mu} (i D_{\nu} i D_{\lambda} + i D_{\lambda} i D_{\nu}) + \dots
$$
\nCPT odd, non-renormalisable\n
$$
+ \dots
$$

- ▶ So far, almost no constraints on the quark-sector coefficients
- ▶ Here: focus on dominant renormalisable and non-renormalisable coefficients of light-quark flavours: $c^{\mu\nu}_f$ and $a^{(5)\mu\nu\lambda}_f$
- †[PRD 55, 6760 \(1997\),](https://doi.org/10.1103/PhysRevD.55.6760) arXiv:[hep-ph/9703464](https://arxiv.org/abs/hep-ph/9703464); [PRD 58, 116002 \(1998\),](https://doi.org/10.1103/PhysRevD.58.116002) arXiv:[hep-ph/9809521](https://arxiv.org/abs/hep-ph/9809521); [PRD 69, 105009 \(2004\),](https://doi.org/10.1103/PhysRevD.69.105009) arXiv:[hep-th/0312310](https://arxiv.org/abs/hep-th/0312310); [PRD 103, 024059 \(2021\),](https://doi.org/10.1103/PhysRevD.103.024059) arXiv:[2008.12206](https://arxiv.org/abs/2008.12206)

[Theoretical overview](#page-6-0) [Deep inelastic scattering](#page-7-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Theory](#page-6-0) [SME](#page-6-0) [DIS under SME](#page-9-0) **[Experiment](#page-10-0)**

[Analysis](#page-11-0)

[Summary](#page-23-0)

 \blacktriangleright Deep inelastic scattering (DIS): electron-proton scattering at high momentum transfer *Q* 2

 \blacktriangleright Kinematic quantities:

$$
Q2 = -q2 = -(k - k')2
$$

$$
x = \frac{Q2}{2P \cdot q}
$$

[Theoretical overview](#page-6-0) [Deep inelastic scattering](#page-7-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Theory](#page-6-0) SMF [DIS under SME](#page-9-0) **[Experiment](#page-10-0)** [Analysis](#page-11-0) **[Summary](#page-23-0)**

- \blacktriangleright Deep inelastic scattering (DIS): electron-proton scattering at high momentum transfer *Q* 2
- \blacktriangleright Kinematic quantities:

$$
Q2 = -q2 = -(k - k')2
$$

$$
x = \frac{Q2}{2P \cdot q}
$$

- ▶ Here: consider DIS at leading order $(\mathcal{O}(\alpha_{\bf s}^0))$, i.e. the quark-parton model
- \blacktriangleright Asymptotically free quarks allow direct access to couplings

[Theoretical overview](#page-6-0) Impact of Standard-Model Extension on DIS

- **[Search for](#page-0-0) effective Lorentz violation**
- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0) SMF** [DIS](#page-7-0) [DIS under SME](#page-9-0) **[Experiment](#page-10-0)** [Analysis](#page-11-0) **[Summary](#page-23-0)**
- \blacktriangleright First studies have computed the impact of the SME on DIS†
- ▶ In presence of SME operators, quark propagators and couplings get modified

$$
\blacktriangleright \hspace{1cm} = \frac{i}{(g^{\mu\nu}\!+\!c^{\mu\nu}+a^{(5)\mu\nu\lambda} \rho_{\lambda})\gamma_{\mu}\rho_{\nu}}
$$

$$
\sum_{\nu} W_{\nu} = -ie(g^{\mu\nu} + c^{\mu\nu} + a^{(5)\mu\nu\lambda}p_{\lambda})\gamma_{\mu}
$$

▶ *x* is no longer the ratio between *p* and *P*

[†][PLB 769, 272 \(2017\),](https://doi.org/10.1016/j.physletb.2017.03.047) arXiv:[1610.08755](https://arxiv.org/abs/1610.08755); [PRD 98, 115018 \(2018\),](https://doi.org/10.1103/PhysRevD.98.115018) arXiv:[1805.11684](https://arxiv.org/abs/1805.11684)

[Experiment](#page-10-0) HERA and ZEUS

effective Lorentz violation Florian Lorkowski

[Search for](#page-0-0)

2024-07-19

[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0) [Analysis](#page-11-0) [Summary](#page-23-0)

HERA accelerator

- ▶ World's only lepton-hadron collider so far
- ▶ Located at DESY in Hamburg, Germany
- \blacktriangleright Two run periods:
	- \triangleright HFRA I: 1992 2000
	- \triangleright HFRA II: 2003 2007
- ▶ Circular collider of length 6336 m
- ▶ Collide electrons/positrons at 27.5 GeV with protons at $920 \text{ GeV} \rightarrow \sqrt{s} = 318 \text{ GeV}$

ZEUS detector

- ▶ General purpose particle detector
- ▶ Integrated luminosity during HERA II: 372 pb⁻¹
- ▶ High-resolution uranium-scintillator calorimeter allows precise measurement of hadronic energies

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0)

[Analysis](#page-11-0)

[Strategy](#page-11-0) [Control study](#page-16-0)

[Systematics](#page-18-0)

[Results](#page-21-0)

[Summary](#page-23-0)

► Temporal phase φ \in [0, 1] for a given period T_{p}

 $\varphi(T) = \frac{\textsf{Mod}(T, T_{\textsf{p}})}{T_{\textsf{p}}}$

▶ Start with time-dependent DIS event count

$$
\int_{PS} dx \, dQ^2 \frac{dN}{dx \, dQ^2 \, d\varphi}
$$

- **[Search for](#page-0-0) effective Lorentz violation**
- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0)** [Experiment](#page-10-0) [Analysis](#page-11-0) **[Strategy](#page-11-0)** [Control study](#page-16-0) **[Systematics](#page-18-0)** [Results](#page-21-0)

[Summary](#page-23-0)

- **►** Temporal phase φ \in [0, 1] for a given period T_p $\varphi(T) = \frac{\textsf{Mod}(T, T_{\textsf{p}})}{T_{\textsf{p}}}$
- ▶ Start with time-dependent DIS event count

$$
\int_{PS} dx \, dQ^2 \frac{dN}{dx \, dQ^2 \, d\varphi}
$$

 \triangleright Normalised event count is easier to model and less sensitive to systematic uncertainties

$$
\frac{\int dx \, dQ^2 \frac{dN}{dx \, dQ^2 \, d\varphi}}{\int dx \, dQ^2 \, d\varphi \frac{dN}{dx \, dQ^2 \, d\varphi}}
$$

 \blacktriangleright However: instantaneous luminosity not constant throughout a solar day; higher luminosity over night (midnight $\hat{=} \varphi_{\text{solar}} \approx 0.5$)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) **[Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) [Strategy](#page-11-0) [Control study](#page-16-0) **[Systematics](#page-18-0)** [Results](#page-21-0) **[Summary](#page-23-0)**

 \blacktriangleright Effect cancels over long enough periods if $T_p \neq 24h$, but measurement time is not long enough

 \blacktriangleright To correct for this effect, need instantaneous luminosity $(O(1\text{min})$ resolution), but this is not available

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0) [Analysis](#page-11-0) **[Strategy](#page-11-0)** [Control study](#page-16-0) **[Systematics](#page-18-0)**

[Results](#page-21-0)

[Summary](#page-23-0)

- \blacktriangleright Effect cancels over long enough periods if $T_p \neq 24h$, but measurement time is not long enough
- \blacktriangleright To correct for this effect, need instantaneous luminosity $(O(1\text{min})$ resolution), but this is not available
- \blacktriangleright Instead, consider double-ratio of two different phase space regions, $PS₁$ and $PS₂$

$$
\frac{\left(\int_{PS_1}dx\,dQ^2\frac{dN}{dx\,dQ^2\,d\phi}\right)/\left(\int_{PS_1}dx\,dQ^2\,d\phi\frac{dN}{dx\,dQ^2\,d\phi}\right)}{\left(\int_{PS_2}dx\,dQ^2\frac{dN}{dx\,dQ^2\,d\phi}\right)/\left(\int_{PS_2}dx\,dQ^2\,d\phi\frac{dN}{dx\,dQ^2\,d\phi}\right)}
$$

- Less statistics, but luminosity dependence cancels
- ▶ All known sources of systematic uncertainty cancel

- \blacktriangleright Identify two scenarios:
	- **1** PS₁ = $Q^2 > 20 \text{ GeV}^2$, PS₂ = $\overline{\text{PS}}_1$:
		- negligible sensitivity to Lorentz violation \rightarrow control study
		- 2 PS₁ = *x* > 10⁻³, PS₂ = $\overline{PS_1}$: sensitive to Lorentz violation \rightarrow search
- ▶ Sensitive to 18 independent *c*-type parameters and 24 *a*⁽⁵⁾-type parameters

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0)

[Theory](#page-6-0)

[Experiment](#page-10-0)

[Analysis](#page-11-0)

[Strategy](#page-11-0)

[Control study](#page-16-0)

[Systematics](#page-18-0)

[Results](#page-21-0)

[Summary](#page-23-0)

[Analysis](#page-11-0) [Control study](#page-16-0)

- **[Search for](#page-0-0) effective Lorentz violation**
- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Strategy](#page-11-0)** [Control study](#page-16-0) **[Systematics](#page-18-0)** [Results](#page-21-0)
- [Summary](#page-23-0)
- ▶ Question: Are there systematic uncertainties remaining?
- Equivalently: is 1 σ -spread of points consistent with 1 σ -statistical uncertainty?
- ▶ Investigate via Kolmogorov-Smirnov (KS): test if numbers are consistent with normal distribution

▶ Low probabilities ($\leq 5\%$) indicate inconsistency, i.e. presence of unknown systematic effects

[Analysis](#page-11-0) [Control study](#page-16-0)

- **[Search for](#page-0-0) effective Lorentz violation**
- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Strategy](#page-11-0)** [Control study](#page-16-0) **[Systematics](#page-18-0) [Results](#page-21-0)**
- [Summary](#page-23-0)

9 / 12

- Question: Are there systematic uncertainties remaining?
- Equivalently: is 1 σ -spread of points consistent with 1σ -statistical uncertainty?
- ▶ Investigate via Kolmogorov-Smirnov (KS): test if numbers are consistent with normal distribution
- ▶ Low probabilities ($\leq 5\%$) indicate inconsistency, i.e. presence of unknown systematic effects
- \blacktriangleright In control study: large probabilities \rightarrow fluctuations compatible with statistical uncertainties
- ▶ Same conclusion when considering different periods T_p or number of bins

[Analysis](#page-11-0) [Systematics](#page-18-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Motivation](#page-1-0) **[Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Strategy](#page-11-0)** [Control study](#page-16-0) **[Systematics](#page-18-0)** [Results](#page-21-0)

[Summary](#page-23-0)

 \blacktriangleright Control study not sufficient to conclude absence of systematic for search

 \triangleright Trigger is more sensitive to x (search scenario) than to *Q* 2 (control study)† \rightarrow potentially further systematic in search scenario

[Analysis](#page-11-0) [Systematics](#page-18-0)

- **[Search for](#page-0-0) effective Lorentz violation**
- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Strategy](#page-11-0)**
- [Control study](#page-16-0)
- **[Systematics](#page-18-0)**
- **[Results](#page-21-0)**
- [Summary](#page-23-0)
- ▶ Control study not sufficient to conclude absence of systematic for search
- \triangleright Trigger is more sensitive to x (search scenario) than to *Q* 2 (control study)† \rightarrow potentially further systematic in search scenario
- \triangleright Observe low KS probabilities in search scenario

Largest deviation at $T_p = 24h$ \rightarrow hypothesis: previously unknown solar-periodic effect

10 / 12

[Analysis](#page-11-0) [Systematics](#page-18-0)

- **[Search for](#page-0-0) effective Lorentz violation**
- Florian Lorkowski 2024-07-19
- **[Motivation](#page-1-0) [Theory](#page-6-0) [Experiment](#page-10-0)** [Analysis](#page-11-0) **[Strategy](#page-11-0)** [Control study](#page-16-0)
- **[Systematics](#page-18-0)**
- **[Results](#page-21-0)**
- [Summary](#page-23-0)
- Control study not sufficient to conclude absence of systematic for search
- \triangleright Trigger is more sensitive to x (search scenario) than to *Q* 2 (control study)† \rightarrow potentially further systematic in search scenario
- \triangleright Observe low KS probabilities in search scenario
- Exemple 1 Largest deviation at $T_p = 24h$ \rightarrow hypothesis: previously unknown solar-periodic effect
- ▶ Estimate systematic uncertainty from $T_p = 24h$ 4min

$$
\sigma_{\text{syst.}} \approx \sqrt{\sigma_{\text{spread}}^2 - \sigma_{\text{stat.}}^2} = 0.16\%
$$

▶ Comparable to statistical uncertainty

Flo

Mot The Exp Ana Stra Con Sys Res Sun

[Analysis](#page-11-0) [Results](#page-21-0)

- First experimental constraints on *c*-type coefficients; first ever constraints on *c^s*
- Much more stringent constraints on *c^u*/*^d* from theoretical analysis of cosmic rays† , but with significant model dependence

†[PRD 96, 095026 \(2017\),](https://doi.org/10.1103/PhysRevD.96.095026) arXiv:[1702.03171](https://arxiv.org/abs/1702.03171)

Flo

Moti The Exp Ana Stra Con S_{VS} Res Sun

[Analysis](#page-11-0) [Results](#page-21-0)

- ▶ First experimental constraints on *c*-type coefficients; first ever constraints on *c^s*
- Much more stringent constraints on *c^u*/*^d* from theoretical analysis of cosmic rays† , but with significant model dependence
- \blacktriangleright First ever constraints on $a^{(5)}$ -type coefficients
- ▶ Possible comparison: effective $a_{\text{proton}}^{(5)}$ coefficients from hydrogen transitions[‡] $\sim 10^{-7} - 10^{-8}$ GeV⁻¹

†[PRD 96, 095026 \(2017\),](https://doi.org/10.1103/PhysRevD.96.095026) arXiv:[1702.03171](https://arxiv.org/abs/1702.03171) ‡[PRD 92, 056002 \(2015\),](https://doi.org/10.1103/PhysRevD.92.056002) arXiv:[1506.01706](https://arxiv.org/abs/1506.01706)

[Search for](#page-0-0)

[Summary](#page-23-0)

Summary

- \blacktriangleright Lorentz and CPT violation can be investigated using the Standard Model Extension
- ▶ Effective Lorentz violation would lead to observable sidereal oscillations
- ▶ First search for effective Lorentz violation in quark sector

0.98 0.99 1.00 1.01 1.02 1.03

▶ Placed constraints on 42 dominant parameters

Outlook

- Plans to investigate further coefficients
- \blacktriangleright Refine systematic study and tighten constraints

⁰ 0.2 0.4 0.6 0.8 1.0 0.97

One-sigma spread

[Data sample](#page-24-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0) [Trigger study](#page-26-1)** [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

Data sample

- ▶ $E_p = 920$ GeV, $E_e = 27.5$ GeV $\rightarrow \sqrt{s} = 318$ GeV
- ▶ Data collected between 2003 and 2007 (HERA II period)
- ▶ Integrated luminosity: 372 pb−¹

Event selection

- \blacktriangleright Identify final-state electron with high confidence
- ▶ Energy of final-state electron E'_{e} > 10 GeV
- \blacktriangleright $Q^2 > 5$ GeV²
- **E** Scattering angle of final-state electron (relative to incoming proton direction) $\theta_e > 1$
- \blacktriangleright Energy longitudinal momentum balance of all detected final-state particles $47 \text{ GeV} < E - p_{z} < 69 \text{ GeV}$

[Sensitivity study](#page-25-0)

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0)** [Trigger study](#page-26-1) [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

- Sensitivity study has been performed on HERA data†
- \blacktriangleright Plot: each dot is an inclusive DIS data point from HERA; show expected limits from each point
- \triangleright Significant dependence on kinematic region
- ▶ Studies of DIS and Drell-Yan data are complementary

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0)** [Trigger study](#page-26-1) [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

 \blacktriangleright How could the relation between solar phase and double ratio arise?

> Solar phase ? Double ratio

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0)** [Trigger study](#page-26-1) [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

 \blacktriangleright How could the relation between solar phase and double ratio arise?

Solar phase Machine operation Instantaneous luminosity \blacktriangleright Length of fills of accelerator affects instantaneous luminosity

Double ratio

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0)** [Trigger study](#page-26-1) [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

 \blacktriangleright How could the relation between solar phase and double ratio arise?

Solar phase Machine operation Instantaneous luminosity

- \blacktriangleright Length of fills of accelerator affects instantaneous luminosity
- ▶ Different trigger configurations, based on instantaneous luminosity
- Trigger efficiency might be different in highand low-*x* regions

Double ratio

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0)** [Trigger study](#page-26-1) [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

Solar phase Machine operation Instantaneous luminosity Trigger efficiency Low-*x* region High-*x* region Double ratio

- Length of fills of accelerator affects instantaneous luminosity
- ▶ Different trigger configurations, based on instantaneous luminosity
- Trigger efficiency might be different in highand low-*x* regions
- ▶ Try to understand effect using Monte Carlo (MC) study
- \triangleright MC samples capture all known relations between instantaneous luminosity and measured ratio

[Search for](#page-0-0) effective Lorentz violation

Florian Lorkowski 2024-07-19

[Data sample](#page-24-0) **[Sensitivity](#page-25-0)** [Trigger study](#page-26-1) [Limit extraction](#page-31-0) [Example ratio](#page-32-0)

- \triangleright MC events do not have time stamps, as SM calculations have no time-dependence
- \triangleright Assign time stamps from data events to MC events with similar instantaneous luminosity \rightarrow MC events gain solar phase dependence corresponding to data
- Double ratio in MC is consistent with statistics alone
	- \rightarrow observed systematic effect not accounted for by any known detector effect

[Search for](#page-0-0)

[Limit extraction](#page-31-0)

 \blacktriangleright Calculate χ^2 and *p*-value between measurement and SM prediction $(r \equiv 1)$

> $\chi^2/\textsf{DOF} = 114/100$ $p = 0.16$

 \rightarrow Result consistent with SM

- ▶ Limit extraction
	- \triangleright Consider one of the 42 coefficients at a time
	- \triangleright Compute p as a function of each coefficient
	- Exclude region where $p < 0.05$

[Search for](#page-0-0)

[Example ratio](#page-32-0)

- ▶ Examples of effect of coefficients
- \blacktriangleright Blue/red lines: limits
- \blacktriangleright Green lines: expected double ratio if coefficients were large

