

Charged lepton flavor violation searches at BESIII

Zhengyun YOU On behalf of the BESIII Collaboration

Sun Yat-sen University

youzhy5@mail.sysu.edu.cn

ICHEP2024, Prague, July 19th, 2024

Outline

- Charged Lepton Flavor Violation (CLFV)
- Experimental searches of CLFV
- The BESIII experiment
- Search for CLFV with charmonium decay
- Prospects
- Summary

Introduction of CLFV

Neutrino oscillation: Uncharged Lepton Flavor Violation

 $e - \mu - \tau$: Charged Lepton Flavor Violation NOT observed yet

CLFV in the SM

- Lepton flavor is conserved in the Standard Model (SM)
- General µ decay

- With a minimal extension to the SM
- Considering massive neutrinos
- CLFV is allowed at loop level $\sim 0(10^{-54})$
- Experimentally undetectable
- Any observation of CLFV would be a clear signature of New Physics beyond the SM

Theoretical Models

- Models provide a complementary approach, with CLFV rates predictable
 Supersymmetr
 - SUSY particles
 - Compositeness
 - Leptoquark
 - Heavy neutrinos
 - Second Higgs doublet Heavy Neutrinos
 - Heavy Z'
 - Axion

Search for CLFV

- $\mu \rightarrow e\gamma, \mu \rightarrow eee, \mu N \rightarrow eN, \mu^+ e^- \rightarrow \mu^- e^+$
- τ decays
 - $\ \tau \rightarrow e \gamma, \tau \rightarrow \mu \gamma, \tau \rightarrow e e \mu, \tau \rightarrow e h, \tau \rightarrow \mu h, \dots$
- Resonance decays

– Meson decays: $J/\psi \rightarrow e\mu/e\tau$, $\Upsilon \rightarrow e\tau$, $B \rightarrow \mu\tau$, ...

- Heavy particles
 - Z/Higgs decays: $Z \rightarrow e\mu, H \rightarrow \mu\tau, ...$
 - Top decays: $t \rightarrow qll'$
 - New heavy particles: $Z' \rightarrow e\mu, \phi \rightarrow \mu\tau, ...$

BEPCII and BESIII

Beijing Electron Positron Collider II

BESIII Detector

BESIII Physics Data

Science Press OXFORD

10 Billion J/ψ collected by BESIII

CPC 46 074001 (2022)

Chinese Physics C

High Energy and Nuclear Physics

Charmonium Data at BESIII

PhiPsi2022

Search for CLFV decay $J/\psi ightarrow e^{\pm} au^{\mp}$

Search for $J/\psi ightarrow e^{\pm} au^{\mp}$

- Analyzing $10.087 \times 10^9 J/\psi$ events
 - Data sample I: 1.3106 $\times\,10^9$ in 2009 & 2012
 - Data sample II: 8.774 imes 10⁹ in 2018 & 2019
- Searching for process $J/\psi \rightarrow e\tau$, $\tau \rightarrow \pi \pi^0 v$
 - Tag with one electron and one charged pion
 - At least two photons to form π^0
 - Mono-energetic electron $P_e \& M_{e_recoil}$ (@au mass)
 - Neutrino with missing energy $E_{miss} > 0.43 \text{ GeV}$

Phys. Rev. D 103 112007 (2021)

Analysis Method

- Partial reconstruction
 - Missing energy $E_{\rm miss} = E_{\rm CMS} E_e E_\pi E_{\pi^0}$
 - $\mathbf{U}_{\mathrm{miss}} = \mathbf{E}_{\mathrm{miss}} \mathbf{c} \left| \overrightarrow{\mathbf{P}}_{\mathrm{miss}} \right|$
 - U_{miss} peaking at 0 for signal events
- 13 (69) candidate events observed in data sample I (II)
 - With the expected background events of 6.9 \pm 1.9 (63.6 \pm 13.2) in data sample I (II)

$J/\psi ightarrow e^{\pm} au^{\mp}$ Upper Limit

- Signal efficiency: $(20.24 \pm 0.05)\% \& (19.37 \pm 0.02)\%$ for data sample I & II
- Continuum background and systematic uncertainties studied
- $\mathcal{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L.
- Improve the previous best limit by two orders of magnitude, comparable with theoretical predictions

Systematic uncertainties					
Sources	Sample I	Sample II			
Number of J/ψ	0.5%	0.4%			
Quoted BF*	0.4%	0.4%			
MC model	0.6%				
Pion PID*	1.0%	1.0%			
Pion tracking*	1.0%	1.0%			
Electron PID	0.4%	0.9%			
Electron tracking*	0.1%	0.1%			
Photon detection*	1.0%	1.0%			
π^0 reconstruction*	1.0%	1.0%			
P_{e} and M_{e} recoil requirements	3.0%	3.3%			
$E_{\rm miss}$ requirement	1.0%	0.8%			
Total uncertainty	3.9%	4.1%			

• One of the best constraints from meson decay

Search for CLFV decay $J/\psi ightarrow e^{\pm}\mu^{\mp}$

Search for $J/\psi ightarrow e^{\pm}\mu^{\mp}$

- Analyzing $8.998 \times 10^9 J/\psi$ events (no 2012 data)
- Searching for two back-to-back $e \mu$
 - $e \mu$ TOF time difference < 1.0 ns to reject cosmic ray muons
 - $-e\,\mu$ on the opposite direction $|\Delta heta| < 1.2^{\circ}$, $|\Delta arphi| < 1.5^{\circ}$
- $e \mu$ particle identification
 - Using dE/dx, EMC deposited energy
 - MUC hits and fitting χ^2

 $J/\psi
ightarrow e^{\pm}\mu^{\mp}$ Upper Limit

- Signal and background
 - Expect 24.8 (J/ ψ decay) + 12.0 (continuum) bkg events
 - Observe 29 candidate events in the signal window
- $\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @ 90\%$ C.L.
- Improve the previous best limit by a factor of **30**
- The most precise CLFV search in heavy quarkonium
- Excluding the parameter space of some models

Prospects

- Charmonium CLFV decay
 - With 10^{10} J/ ψ and 2.7×10^{9} $\psi(3686)$ events
 - Search for $J/\psi \rightarrow \mu \tau$, $\psi(3686) \rightarrow e\mu$
 - Expected sensitivity $\mathcal{O}(10^{-8})$
- CLFV search with other mesons
 - Intermediate particles from charmonium decay
 - Sensitive to different operators in EFT
 - $\mathbf{0}^{-}: \boldsymbol{\eta}, \boldsymbol{\eta}', \boldsymbol{\eta}_{c}, \boldsymbol{D}, \boldsymbol{D}_{s}$
 - $1^{-}: J/\psi, \psi(3686)$
 - J^+ : χ_{cJ} , h_c
- CLFV search with radiative decay
 - Sensitive to more operators

	J^P	Generate	$e\mu$	$e\tau$	$\mu \tau$	$\gamma \ell_1 \bar{\ell}_2$
η'	0-	$J/\psi \rightarrow \gamma \eta^\prime, (5.25\pm 0.07)\times 10^{-3}$	4.7×10^{-4}	-	_	
$\eta_c(1S)$	0-	$J/\psi \to \gamma \eta_c(1S), (1.7 \pm 0.4) \%$	no result	no result	no result	
J/ψ	1-	$e^+e^- \to J/\psi, 1\times 10^{10}$	4.5×10^{-9}	7.5×10^{-8}	2.0×10^{-6}	
$\psi(3686)$	1-	$e^+e^- o \psi(3686), 2.7 imes 10^9$	no result	no result	no result	no result
χ_{cJ}	J^+	$\psi(2S) \to \gamma \chi_{cJ}, \sim 10 \%$	no result	no result	no result	
$h_c(1P)$	1+	$\psi(2S) \to \pi^0 h_c(1P), (7 \pm 5) \times 10^{-4}$	no result	no result	no result	

- CLFV provides unique information to search for New Physics
- BESIII has great potentials in search for CLFV with charmonium data
- Currently the most stringent CLFV upper limit in heavy quarkonium sector
 - $\mathcal{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L.
 - $\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @ 90\%$ C.L.
- More BESIII CLFV results are expected in the next few years!

Thank you!