ATLAS Searches With Unconventional Signatures and Long-Lived Particles

Andrew Smith On behalf of the ATLAS Collaboration ICHEP July 20th, 2024

Unconventional Signatures and LLPs

- Beyond Standard Model (BSM) physics may look quite different than what we have been expecting...
- BSM decays can produce **unconventional signatures** with challenging backgrounds (e.g. Lepton Jets)
- Well-motivated scenarios lead to Long Lived Particles (LLPs) due to weak couplings, compressed mass spectra
 - ATLAS projective geometry + prompt reconstruction not designed to efficiently target LLPs
- Searches for these signatures push the limits of detector performance!
 - Often require special reconstruction, dedicated triggers, data-driven background estimation

Recent ATLAS Unconventional/LLP Search Program

	Reference	Title	Publication	Date
NEW for ICHEP!	ATLAS-CONF-2024-011	Displaced Leptons Run 2 + Run 3	Conf. Note	20 July 2024
	EXOT-2022-04	Hadronic LLPs w/ Associated leptons or jets	Submitted to JHEP	12 July 2024
	EXOT-2018-55	Dark Photons (Prompt Lepton Jets)	Submitted to EPJC	12 July 2024
	ATL-PHYS-PUB-2024-009	Pixel dE/dx + β -calo chargino interpretation	Pub. Note	31 May 2024
	ATL-PHYS-PUB-2024-007	RPC-to-RPV LLP di-tau re-interpretation	Pub. Note	6 May 2024
	EXOT-2021-32	Hadronic LLPs using Displaced Vertices	Submitted to PRL	22 March 2024
	EXOT-2022-15	Dark Photons (Displaced Lepton Jets)	Accepted by EPJC	30 November 2023
_	ATLAS-CONF-2023-044	Pixel dE/dx + β-calo	Conf. Note	8 September 2023
	EXOT-2019-33	Magnetic Monopoles	<u>JHEP 11 (2023) 112</u>	9 August 2023

- Extensive search program in ATLAS, not enough time today to cover everything!
- Results in **blue** will be covered in this talk

Overview

Unconventional prompt signatures

Dark Photons (Lepton Jets) NEW

LLPs in the inner detector (ID)

- Hadronic LLPs using displaced vertexing
- Displaced Leptons search Run 2 + Run 3 NEW

LLPs in the calorimeters / muon system

• Neutral LLPs + leptons or jets NEW

Image by <u>Heather Russell</u>

Dark Photon (Lepton Jets)

New for ICHEP

- Benchmark: Neutral γ_d decays to collimated SM fermions. $m(\gamma_d) \sim O(10 \text{GeV}) \rightarrow \text{leptons}$ Kinetic mixing coupling (ϵ) to SM γ related to γ_d lifetime
 - Target $\epsilon > 10^{-5} \rightarrow \text{prompt } \gamma_{d}$

Expect two collimated "Lepton Jets" (LJs) with zero sum of charges

- Trigger on single or multi-lepton events
- μ LJs: $\geq 2\mu$ in Δ R < 0.4 cone (no e)
- eLJs: $\geq 1e$ with multiple associated tracks \rightarrow wide showers + balanced p_T
- μ LJ Backgrounds virtual $\gamma \rightarrow \mu \mu$; pair-produced SM resonance $\rightarrow \mu \mu$
- eLJ Backgrounds (SM e from Z or $t\bar{t}$) + (random track)

Falkowsky, Ruderman, Volansky, Zupa (FRVZ) Model

Hidden Abelian Higgs Model (HAHM)

eLJ-eLJ: ABCD (width of shower ϕ , p_T imbalance of LJ tracks)

Andrew Smith, Columbia University

ICHEP, July 20th 2024

EXOT-2018-55

Dark Photon (Lepton Jets) Results

- No deviation from Standard Model \rightarrow set limits on Higgs BR to γ_d between 0.05% and 1% excluded, depending on m(γ_d)
- New sensitivity w.r.t. ATLAS Run 1 result [JHEP02(2016)062], driven by new shape fit technique
- $m(\gamma_d) = .4$ GeV, FRVZ model: BR(H $\rightarrow 2\gamma_d + X$) limits improve x50 (x13, accounting for added lumi + higher cross-section)

New for ICHEP

Special Reconstruction: Large Radius Tracking

- Standard track reconstruction in ATLAS designed for tracks pointing back to Primary Vertex (PV)
- Large Radius Tracking (LRT) additional tracking pass on unused hits after initial tracking pass, relaxing some requirements (e.g. impact parameters)
- Difficult computational problem high pileup, many random hits in the tracker

Improvements in LRT [IDTR-2021-03]

- Run on all events, rather than prev. ~10%
- In Run 2: can now look at LRT with full dataset!
- In Run 3: [new LRT triggers] increase sensitivity to LLP decays!

ICHEP, July 20th 2024

Hadronic LLPs Using Displaced Vertices

Andrew Smith, Columbia University

ICHEP, July 20th 2024

LLPs w/ Displaced Vertices Results

- No Excess w.r.t SM predictions. BR(H \rightarrow SS \rightarrow 4c) > 10% excluded for m_S = 5 GeV, 3mm < $c\tau$ < 20mm
- New LRT, New VBF, 1*l*, 1DV regions deliver sensitivity w.r.t. previous [JHEP 11 (2021) 229] ATLAS Run 2 result!

ICHEP, July 20th 2024

New for ICHEP Displaced Leptons In Run 2 + Run 3

Benchmark: slepton pair production via Gauge-Mediated Supersymmetry Breaking (GMSB)

• Next-to-lightest Supersymmetric Particle (NLSP) is LLP ($\tau \sim .01-100$ ns)

Expect displaced pairs of SM leptons

- Reconstruct *e/μ* using standard and LRT tracks
- Can look in 1*e*, $e\gamma$, $\gamma\gamma$, where one decay is outside ATLAS or displaced e reco'd as γ

First result exploiting new LRT triggers in Run 3, designed for displaced e/μ

(ee,eµ,µµ) Run 2 + 3

- ABCD (ℓ_1 track quality, ℓ_2 track quality)
- Near zero-background search

(1e, $e\gamma$, $\gamma\gamma$) Run 3 BDT for final states with e, γ

- Lower lepton multiplicity, higher backgrounds to cope with
 - \rightarrow Displaced electron tagger using tracker + calorimeter info (+BDT targeting $\gamma\gamma$)

 $\ell = e, \mu, \tau$

Slepton-pair production

New for ICHEP

Displaced Leptons Strategy

Liquid Argon (LAr) Calorimeter precision timing can be exploited to target LLPs

- O(200ps) resolution for energetic e/γ (limited by beamspread)
- Enough to resolve "late" e/γ from LLP decays against prompt SM background

BDT utilizes timing symmetry of prompt background for prediction in search region

- Train on data with $ToF_{cal} < 0$, signal $ToF_{cal} > 0$ to predict scores in $ToF_{cal} > 0$ data
- Validated by applying BDT to events enriched in SM W/Z

[us] ATLAS Preliminary EMB Inl < 0.4 High Gain solution 0.5 Vs=13 TeV, 26.1 fb⁻¹ p = 2.071 ns GeV. p = 0.208 ns EMB Inl < 0.4 Medium Gair 0.45 = 2.690 ns GeV, p = 0.219 ns æ $\sigma(t) = \frac{P_0}{E} \oplus P_1$ 0.4 0.35 0.3 0.25 0.2 0.15 5 7 10 20 30 40 50 70 E_{cell} [GeV]

Andrew Smith, Columbia University

ICHEP, July 20th 2024

Displaced Leptons In Run 2 + Run 3 New for ICHEP New sensitivity for long-lived decays to electrons from BDT ~5x for selectrons, ~3x for staus Smuons **Selectrons** $\widetilde{\mu}$ - $\widetilde{\mu}$; $\widetilde{\mu} \rightarrow \mu ~\widetilde{G}$ **Staus** ẽ-ẽ: ẽ → e Ĝ τ̃-τ̃; τ̃ → τ Ĝ̃ 10⁴ _ifetime [ns] 10 Lifetime [ns] _ifetime [ns] **ATLAS** Preliminary Expected Limit $(\pm 1 \sigma_{exp})$ ATLAS Preliminary **ATLAS** Preliminary --- Expected Limit (±1 σ_{exp}) - - - Expected Limit (±1 σ_{exp}) 10^{3} √s=13 TeV. 140 fb⁻¹ 10^{3} Observed Limit √s=13 TeV. 140 fb⁻¹ √s=13 TeV. 140 fb⁻¹ Observed Limit Observed Limit √s=13.6 TeV, 56.3 fb⁻¹ √s=13.6 TeV, 56.3 fb⁻¹ √s=13.6 TeV. 56.3 fb⁻¹ PRL 127 (2021) 051802 PRL 127 (2021) 051802 PRL 127 (2021) 051802 10^{2} All limits at 95% CL 10^{2} All limits at 95% CL All limits at 95% CL 10 10 10 10-10-10 10⁻² 10⁻² 10^{-2} 10^{-3} 10⁻³ 10 100 800 100 800 900 1000 200 300 500 600 600 m(e) [GeV] m(μ̃) [GeV] m(τ̃) [GeV]

- First ATLAS Search Result at \sqrt{s} = 13.6 TeV, No significant deviation from SM expectation
- Largest local significance 2.2σ in LRT-enriched ee final state (1 event observed, 0.0016^{+0.0029}_{-0.0016} expected)
- Adding early Run 3 data + new triggers improves sensitivity w.r.t. previous search [PRL 127 051802]
 - Smuon limits for $\mu\mu$ final states only gains here driven by Run 3 LRT triggers
 - BDT region probes new final states, allows exclusion at higher lifetimes

Displaced Leptons: Big Picture

 New results from re-interpretation of prompt direct staus [<u>ATL-PHYS-PUB-2024-007</u>] + Displaced Leptons offer new sensitivity to staus (but gaps still remain!)

ICHEP, July 20th 2024

New for ICHEP

Hadronic LLPs + Leptons/Jets

Target pair-produced LLPs, LLP + Standard Model W/Z

Expect jets with low energy fraction in electromagnetic calorimeter due to displacement \rightarrow Exploit hadronic/electromagnetic calorimeter energy fraction \equiv "CalRatio" jets

- Trigger on e/μ from W/Z \rightarrow CalRatio + W/Z channels
- Trigger on jets from LLP (CalRatio triggers) → CalRatio + 2J channel
- Suppress multijet, beam-induced background with per-jet NN, then use ABCD method

ABCDisCo: Train NN discriminant, explicitly decorrelate with $\Sigma(\Delta R_{min})$ to build ABCD plane

ICHEP, July 20th 2024

prompt "handle" for triggering

Pair-produced

allows probing smaller $c\tau$

 V^*

Axion-like particle (ALP) + g

SM Vector Boson

3x improvement for BR(H → SS → 4b) w.r.t previous search [JHEP06(2022)005]

 $\begin{array}{l} HZZ_d \ \sigma > 0.1 \ pb \ for \ Z_d \ with \ c\tau \in 0.1 mm-\\ 10m \ (\textbf{10x} \ improvement \ w.r.t \ previous \\ search \ [\underline{PRL122(2019)151801}]: \ more \\ stats \ + \ per-jet \ NN) \end{array}$

Photo-phobic ALP $\sigma > 0.1$ pb excluded for $c\tau \in 0.1$ mm-10m

Conclusion

If BSM manifests as an LLP...

- Could escape "standard" search methods
- So far setting limits, expanding to meet prompt regime and cover out to detector-stable LLPs
- Require custom variables, dedicated triggers, special reconstruction...
- \rightarrow LRT in Run 2 and (with triggers) in Run 3
 - Extensive search program in ATLAS, not enough time to cover everything!
 - See <u>ATLAS Public Results Page</u>

→ First ATLAS Search Result at \sqrt{s} = 13.6 TeV → More exciting results as Run 3 continues

BACKUP

Prompt Lepton Jets Extra

eLJ channel ABCD:

*µ*LJ channel background shape parameterization:

$$\begin{split} B(m_{\mu \text{LJ}}) &= \left(1 - f_{\text{exp}} - f_{J/\psi} - f_{\phi(1020)} - f_{\psi(2S)}\right) e^{-m_{\mu \text{LJ}}/\tau_2} + f_{\text{exp}} e^{-m_{\mu \text{LJ}}/\tau} + \\ &+ f_{J/\psi} e^{-\left(\frac{m_{\mu \text{LJ}} - \mu_{J/\psi}}{\sigma_{J/\psi}}\right)^2} + f_{\psi(2S)} e^{-\left(\frac{m_{\mu \text{LJ}} - \mu_{\psi(2S)}}{\sigma_{\psi(2S)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu \text{LJ}} - \mu_{\phi(1020)}}{\sigma_{\phi(1020)}}\right)^2}, \end{split}$$

Double exponential + Gaussian probabilities for SM resonances

eLJ channel region definitions:

Requirement / Region	SR	CR B	CR C	CR D	VR_Z
Applied to both leading and farthest <i>e</i> LJ					
N. of EM clusters in <i>e</i> LJ			1		
eLJ mass imbalance			< 0.8		
Selection on event-level variables					
$\Delta \phi(eLJ,eLJ)$			> 2.5		
N. of Jets $(p_{\rm T} > 40 {\rm GeV})$			0		
$m(eLJ,eLJ) \notin [80, 100] \text{ GeV}$	yes	yes	yes	yes	veto
Leading $eLJ p_{T}^{imb}$	< 0.8	< 0.8	> 0.8	> 0.8	_
Farthest $e \text{LJ } R_{\phi}$	< 0.96	> 0.96	< 0.96	> 0.96	—

$m_{\mu\mu}$ for selected m(γ_d)

EXOT-2018-55

Andrew Smith, Columbia University

ICHEP, July 20th 2024

Hadronic LLPs Using DVs Extra

Photon Validation Region

- Validate extrapolation of per-jet probabilities to event-level weights for background prediction in $BDT_{j0} \times BDT_{j1} < 0.7$ using
 - $BDT_{j0} \times BDT_{j1} < 0.7 \rightarrow 0.7 < BDT_{j0} \times BDT_{j1} < 0.9$ for $n_{DV} = 1$
 - Events with high- p_T photon, 2 jets, 0 leptons for $n_{DV} \ge 2$

Low-score validation region

EXOT-2021-32

Andrew Smith, Columbia University

ICHEP, July 20th 2024

Displaced Leptons Extra

- Exclusion results from combined fit across nine ABCD regions and EM-BDT region
- EM-BDT non-closuse shape systematic from disagreement in extrapolation across (t = 0) in W/Z enriched events

Results across all signal regions

Signal Region	Total Bkg.	Data	$\langle A\epsilon\sigma angle_{ m obs}^{95}$ [fb]	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_b	p(s=0)(Z)
SRee-high-p _T -Run2	0.031 ± 0.031	0	0.02	3.0	$3.0^{+0.0}_{-0.0}$	0.46	0.5 (0)
SRee-high-p _T -Run3	0.06 ± 0.05	0	0.05	3.0	$3.0^{+0.0}_{-0.1}$	0.45	0.5 (0)
SRee-LRT	$0.0016^{+0.0029}_{-0.0016}$	1	0.07	4.1	$3.1^{+0.0}_{-0.1}$	0.97	0.01 (2.2)
$SR\mu\mu$ -high- p_T -Run2	$0.02^{+0.22}_{-0.02}$	0	0.02	3.0	$3.0^{+0.0}_{-0.0}$	0.49	0.5 (0)
$SR\mu\mu$ -high- p_T -Run3	$0.01^{+0.11}_{-0.01}$	0	0.05	3.0	$3.0^{+0.0}_{-0.0}$	0.48	0.5 (0)
$SR\mu\mu$ -LRT	$0.02^{+0.04}_{-0.02}$	0	0.05	3.0	$3.0^{+0.0}_{-0.0}$	0.49	0.5 (0)
$SRe\mu$ -high- p_T -Run2	$0.0016^{+0.0033}_{-0.0016}$	0	0.02	3.0	$3.0^{+0.0}_{-0.1}$	0.50	0.5 (0)
$SRe\mu$ -high- p_T -Run3	$0.004^{+0.010}_{-0.004}$	0	0.05	3.0	$3.1^{+0.0}_{-0.0}$	0.50	0.5 (0)
SR <i>eµ</i> -LRT	$0.2^{+0.4}_{-0.2}$	0	0.05	3.0	$3.0^{+0.1}_{-0.1}$	0.45	0.5 (0)
SR-EMBDT	$1.0^{+2.3}_{-0.9}$	3	0.13	7.1	$5.7^{+1.9}_{-0.8}$	0.77	0.2 (0.9)

electron **BDT**

Andrew Smith, Columbia University

ICHEP, July 20th 2024

ATLAS-CONF-2024-011

Hadronic LLPs + Leptons/Jets Extra

 Gluon coupling proportional to cτ, SM weak sector coupling proportional to σ, → can set limits on C_{W̃}, C_{G̃}

BDT CalR+Z performance:

