First Search for $K_L^0 \rightarrow \pi^0 e^+ e^- e^+ e^-$

Xiangchen Li

UNIVERSITY OF CHICAGO

ICHEP 2024 @ Prague

July 19th, 2024

- We will present our attempt to the first experimental search for rare decay $K_L^0 \to \pi^0 e^+ e^- e^+ e^-$ with blind analysis.
- Results after opening box will be presented.

Background

• In Standard Model, variant of $\mathcal{K}_{L}^{0} \to \pi^{0}\gamma\gamma$ ($\mathcal{BR} \approx 1.2 \cdot 10^{-6}$). $\mathcal{K}_{L}^{0} \to \pi^{0}\gamma^{*}\gamma^{*}$, $\gamma^{*} \to e^{+}e^{-} \Rightarrow \mathcal{K}_{L}^{0} \to \pi^{0}e^{+}e^{-}e^{+}e^{-}$ Assuming virtual photon decay is not affected by the adjacent mesons, SM predicts

 ${\cal BR} \sim 10^{-10}.$

• In dark sector model, this decay can be achieved through

$${\cal K}^0_L o \pi^0 X X$$
, $X o e^+ e^-$

Theory suggests measurement with sensitivity at least $O(10^{-6})$ can improve the constraints on their novel model of an MeV-scale QCD-axion.

[Hostert and Pospelov, PHYSICAL REVIEW D 105, 2022]

Motivation

Our data taken in 2021 with special triggers ($\sim 1.47 \cdot 10^{12} K_L^0$) allow us to achieve a sensitivity close to $\mathcal{O}(10^{-8})$ allowing for exploration of BSM signatures.

KOTO Experiment

- KOTO is an international collaboration with dedicated experiment to search the Golden Decay $K_L^0 \to \pi^0 \nu \bar{\nu}$
- Produce K⁰_L through the below setup using accelerated proton beam at J-PARC (Japan Proton Accelerator Research Complex)

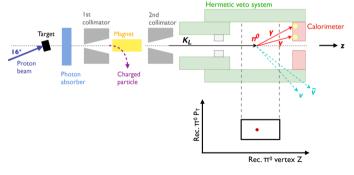


Figure: Schematic Diagram of Experiment Setup

Xiangchen Li

Data in Analysis

- Data taken by Experiment in 2021 special runs with CV in Trigger (\sim 1 month of physics data)
- CV (Charged Veto) two layers of scintillation counter plane
- CSI (Cesium Iodide) Calorimeter

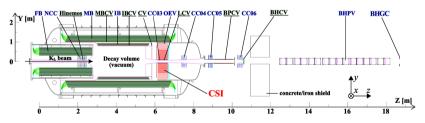


Figure: Schematic Diagram of Detectors in KOTO Experiment

Figure: CV Detector

Decay Reconstruction

- Keep events with 6 hits on CSI (6 clusters)
- Find Vertex Z assuming $K_L^0 \times$, y = COE \times , y (center of energy) with K_L^0 mass constraint
- O Use vertex to find CV Hit positions
- Map with CV plane and identify charged particles
- **③** Use the two uncharged particles to reconstruct π^0 vertex

Figure: Step 3

$$M_{K_L}^2 = \sum_{i < j}^6 2E_i E_j (1 - cos heta_{ij})$$

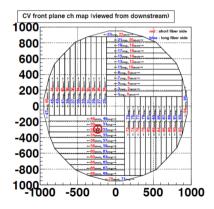
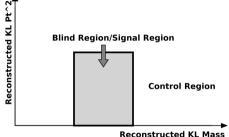


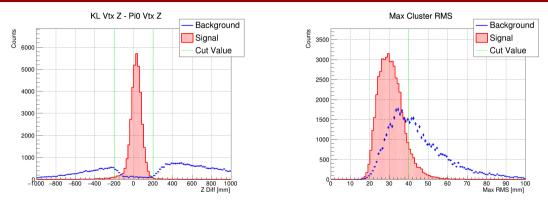
Figure: Step 4 - CV Plane Geometry

Xiangchen Li


Background Decays

 5 major backgrounds considered with large amount of Monte Carlo simulation data generated with Geant4 on KEKCC (KEK central computer system) and OSG (Open Science Grid).

Decay Name	Decay Mode	(\mathcal{BR})	N _{exp}	N _{MC}
π+ - 0	$K^0_L ightarrow \pi^+\pi^-\pi^0$	0.1254	$1.84\cdot10^{11}$	$6.03\cdot10^{11}$
$3 \pi^0$	$K^0_L ightarrow \pi^0 \pi^0 \pi^0$	0.1952	$2.87\cdot 10^{11}$	$3\cdot 10^{12}$
$3 \pi^0 1$ Dalitz	$1 \; \pi^0 o \gamma e^+ e^-$	$2.2 \cdot 10^{-3}$	$3.2 \cdot 10^9$	$1.1\cdot10^{10}$
$3 \pi^0 2$ Dalitz	$2 \pi^0 o \gamma e^+ e^-$	$2.6\cdot10^{-5}$	$3.8 \cdot 10^7$	$8.4\cdot 10^9$
$3 \pi^0$ double Dalitz	$1 \pi^0 ightarrow e^+ e^- e^+ e^-$	$6.3\cdot10^{-6}$	$9.3 \cdot 10^{6}$	$2.4\cdot 10^9$


- Accidental Events from real data are overlayed.
- Other backgrounds proved to be negligible from preliminary study, including K^+ decays and $K_L^0 \to \pi^0 \pi^0$.

- Signal events should have reconstructed K_L^0 mass close to true value and low K_L^0 transverse momentum since no particle is missing.
- Blind analysis: Events inside the blind region were inaccessible until selection criteria were determined

- Besides the reconstruction, signal identification is based on a set of physical cuts that highly depress all relevant background sources.
- Three major kinds of cuts: Veto detector cuts, kinematic cuts, and cluster shape cuts.

Background Reduction - Example of Cuts

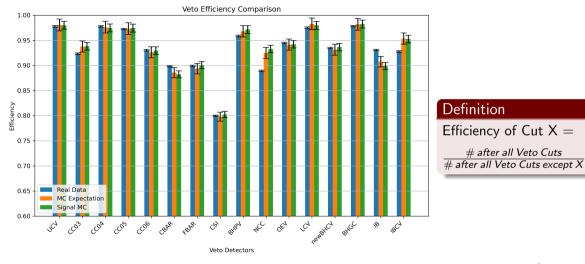
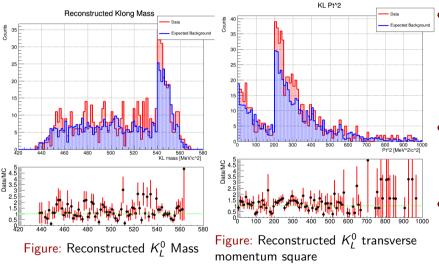

Figure: Vertex Z Difference Distribution

Figure: Cluster Shape RMS Distribution

- MC of backgrounds (normalized based on branching ratio and acceptance) compared to MC of signal
- Complete cut set with thresholds used is attached in backup slides

Xiangchen Li


Data and MC Agreement - Veto Efficiency

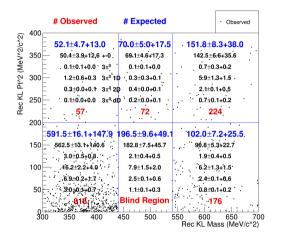
• Precuts: Geometry cuts on CSI Hits (Max R, Min(x,y)) and Max cluster shape χ^2

Xiangchen Li

Data and MC Agreement - Cut Variable Distributions

 PreCuts: VetoCuts, CSI geometry cuts, 4 CV Hits, Pi0 Vertex Cut, Vertex Difference Cut, COE XY cut.

- The distributions of data and backgrounds expectation from MC shows agreement.
- This agreement suggests no major missing backgrounds at this stage.


11 / 16

Xiangchen Li

First Search for $K_I^0 \to \pi^0 e^+ e^- e^+ e^-$

July 19th, 2024

Data and MC Agreement - Cotrol Regions

100	# Observed	# Expected	Observed
Rec KL Ptr2 (MeVr2/Cr2) 320 50 50 50 50 50 50 50 50 50 50 50 50 50	0.0±0.0+0.0	49.3±4:3+12.3	7.4±1.5+1.8
š 350	0.0±0.0+0.0 +-0	48.6±3.9+12.2	7.3±1.5+1.8
5	0.0±0.0+0.0 3π ⁰	.0.1±0.1+0.0	0.0±0.0+0.0
<u></u> 2 300	0.0±0.0+0.0 3π ⁰ 1		0.0±0.0+0.0
L E	0.0±0.0+0.0 3π ⁰ 2	D 0.2±0.0+0.1	. 0.0±0.0+0.0
· 250 -	0.0±0.0+0.0 3π ⁰ d	D 0.1±0.0+0.0	0.0±0.0+0.0
_	0	50	. 8
200	0.3±0.3+0.1	137.5±8.2+34.4	8.4±1.7+2.1
150	0.3±0.3+0.1	127.2±6.2+31.8	8.3±1.6+2.1
_	0.0±0.0+0.0	1.8±0.4+0.5	. 0.1±0.1+0.0
100	0.0±0.0+0.0	6.5±1.4+1.6	0.0±0.0+0.0
_	0.0±0.0+0.0	1.4±0.1+0.4	0.1±0.0+0.0
50	0.0±0.0+0.0	0.6±0.0+0.1	0.0±0.0+0.0
E	0	Blind Region	·: 7
0 300	350 400	450 500	550 600 650 700 Rec KL Mass (MeV/c^2)

Figure: χ^2 Cut **Figure:** Cuts: χ^2 , RMS, π^0 Vertex Z, Vertex Z Diff • Black numbers = expected number of each background source.

Xiangchen Li

Data and MC Agreement - Control Regions

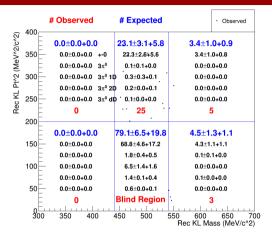


Figure: Cuts: χ^2 , RMS, π^0 Vertex Z, Vertex Z Diff, COE X, COE Y

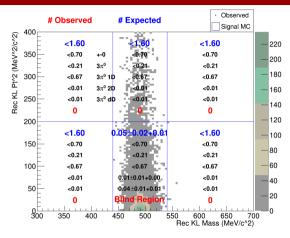
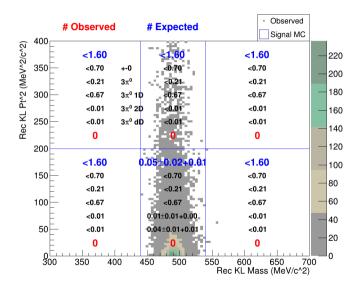



Figure: With All Cuts (complete cut set in backup). 90% C.L. limits provided

• Shaded area represents signal events distribution from MC.

Xiangchen Li

Open Box

- With the final cut set, we expect < 1 background event in signal region.
- After Opening Box, we see **0** events in signal region.

- Total yield of K_L^0 is calculated through normailzation to $3\pi^0$ with a different trigger: $Y \approx 1.47 \times 10^{12}$.
- Signal Acceptance calculated from MC:

$$A_{sig} = rac{N_{sig\ MC\ accepted}}{N_{sig\ MC\ generated}} = rac{11839}{3.9\cdot 10^9} pprox 3.04 imes 10^{-6}$$

• Single Event Sensitivity:

$$SES = rac{1}{\mathbf{Y}\cdot A_{sig}} pprox 1.79 imes 10^{-7}$$

• Finally, at 90% C.L., we can set a upper limit $\mathcal{BR}(\mathcal{K}^0_L\to\pi^0 e^+e^-e^+e^-)<\mathbf{4.11}\times\mathbf{10^{-7}}$

- Algorithm developed to reconstruct signal decay.
- Set of cuts used to reduce background sources.
- With blind analysis, agreement between MC and data is presented.
- No signal events observed within signal region after opening the box.
- We set the first upper limit on this decay mode (Preliminary),

 ${\cal BR}({\cal K}^0_L o \pi^0 e^+ e^- e^+ e^-) < 4.11 imes 10^{-7}$ (at 90% C.L.)

Backup

Cut Variable Name	Threshold	Cut Variable Name	Threshold
Max Cluster Chi2	< 6	CV Hit Min Energy	> 0.1 MeV
Max Cluster RMS	< 40 mm	CV Hit Time - Estimated time	[48.8, 57.9] ns
Reconstructed KL vertex Z	[3000, 5000] mm	Min Front CV Hits Distance	> 250 mm
Reconstructed Pi0 vertex Z	[3000, 5000] mm	Min Rear CV Hits Distance	> 300 mm
KL Z - Pi0 Z	[-200,200] mm		2 000 1111
Max CSI Fiducial R	< 850 mm	COE X and COE Y	[-100, 100] mm > 0.9 < 200 MeV^2 [440, 540] MeV
Min CSI (x , y)	> 150 mm	Min CSD	
Min Cluser Energy	> 50 MeV	Reconstructed KL Pt^2	
Min Cluster Distance	> 150 mm	Reconstructed KL Mass	
Delta Vertex Time	< 3 ns	Figure: Full Cut Set continued.	
Delta Cluster Time	< 4 ns		

Figure: Full Cut Set

Veto Cuts Thresholds

Veto Detector Name	Cut Threshold (MeV)		
UCV	0.05		
CC03	3		
CC04	3		
CC05	3		
CC06	3		
CBAR	2		
FBAR	2		
BHPV	2.5		
NCC	2		
OEV	2		
LCV	0.6		
BHGC	2.5		
IB	2		
IBCV	1		

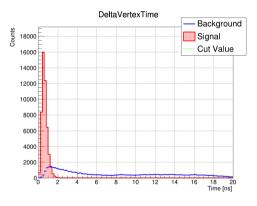


Figure: Delta Vertex Time

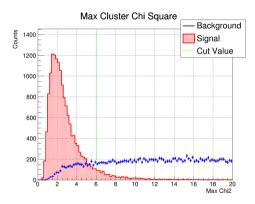


Figure: Cluster Chi2

Backup - Cuts

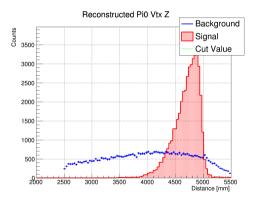


Figure: Pi0 Vertex Z

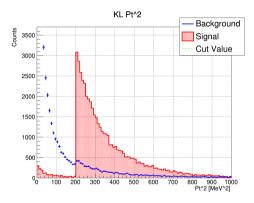


Figure: Rec KL Pt2

Backup - Cuts

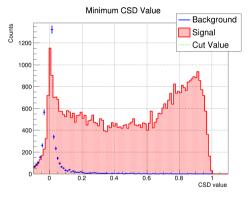
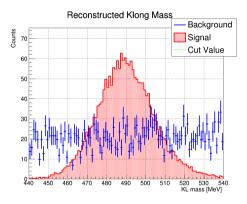
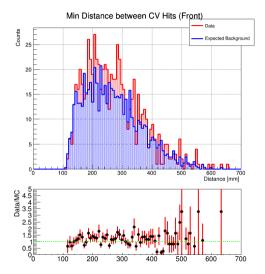
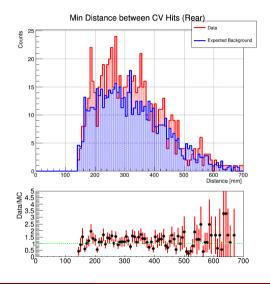
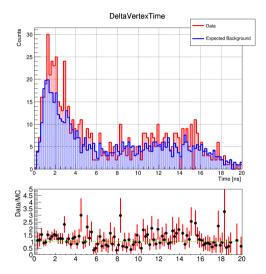
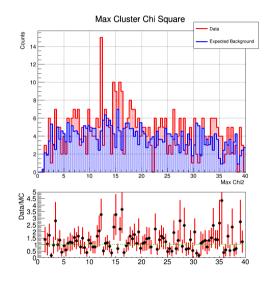
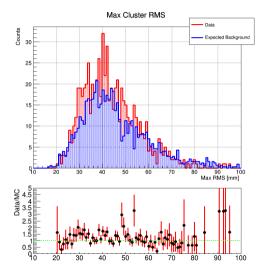
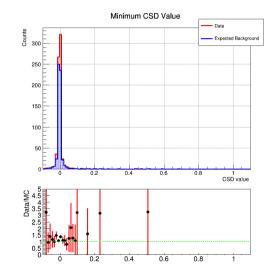
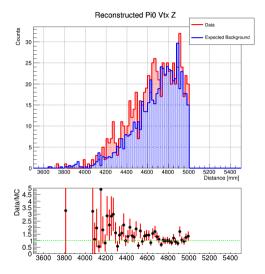


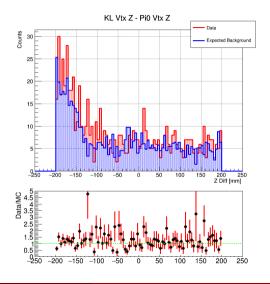
Figure: Min CSD value


Figure: Rec KL Mass







BACKUP