Status on the Neutrino Elastic-scattering Observation with Nal(Tl) experiment

In-Soo Lee

Institute for Basic Science

On behalf of the NEON collaboration

Motivation

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

 E_{ν} vs E_{NR} for CEvNS (Cs)

- Predicted in 1974 by Daniel Z. Freedman [Phys. Rev. D 9, 1389] (1974)
- First measurement by the COHERENT collaboration using spallation neutron source. [Science 357, 1123-1126] (2017)]

- **CEvNS @ Reactor**
 - Single flavor $(\overline{\nu}_{e})$
 - High flux : $10^{12} \sim 10^{13} v/cm^2 s$
 - **Fully coherent** regime ($E_{\nu} < 10 \text{ MeV}$)
 - Few keV recoil energy and signal quenched

GEANT4 based Monte Carlo simulation Internal backgrounds Surface contaminant **Cosmogenic** activation External backgrounds + Seasonal variation of ²²²Rn in calibration holes [arXiv:2406.06117] + Dust contamination in LS IEOS Radon eve measureme Fitted ²²²Rn in the calibration hole 22-07-02 23-01-01

CEvNS Search Analysis

Use machine learning

- Multilayer perceptron (MLP)
- Variables : Time differences, Cluster charges, Charge asymmetry

→ Require very low threshold

NEON experiment

Neutrino Elastic scattering Observation with Nal

- Hanbit Nuclear power plant in Korea
- Unit-6
 - 2.8 GW thermal power

Neutrino flux

- **Tendon gallery**
- 23.7 m from reactor core
- 20-m.w.e overburden
- Neutrino flux : $8.1 \times 10^{12} \text{ cm}^2 \text{ s}^{-1}$

- Samples
 - Experimental data : w/ deadtime, Vetoed by deadtime
 - **Simulation sample : Scintillation, Phosphorescence**
- Chi-square fitting to extract scintillation
- Testing w/ multiple-hit events for bias test

MLP distribution

35% Efficiency

- 10 cm **Lead**
- 20 cm Polyethylene
- 2.5 cm borated-Polyethylene
- Active shield
 - 800 L LAB base Liquid Scintillator (LS)

Operation

The largest exposure from all reactor CEvNS search experiments!

Event selection

Waveform simulation [NIM A 1065 (2024) 169489]

Physics waveform

Light yield ~24 photoelectron(PE)/keV

Detector	Mass (kg)	Size (inch, D X L)	Light yield w/o low gain (PEs/keV)	Light yield w/ low gain (PEs/keV)
DET-1	1.67	3 X 4	22.0 ± 0.4	25.3 ± 0.6
DET-2	3.34	3 X 8	25.6 ± 1.1	27.8 ± 1.4
DET-3	1.65	3 X 4	21.8 ± 0.5	23.3 ± 0.9
DET-4	3.34	3 X 8	23.7 ± 0.4	25.4 ± 0.7
DET-5	3.35	3 X 8	22.4 ± 0.5	23.6 ± 0.8
DFT-6	3 35	3 7 8	25.0 + 0.5	279+07

- **Reactor on: 523 days Reactor off: 144 days**
- ~11,000-kg·days exposure

- Fit to On-Off data in 1~20 keV region Upper limit of $\sigma_{\chi-e}$ @ 90% CL

- NEON experiment is stably operating to observe CEvNS of reactor neutrino using Nal(Tl) crystal at Hanbit Nuclear Power Plants.
 - 523 (143) days of reactor on (off) data
- CEvNS search analysis is ongoing with event selection and background modeling.
- Dark Sector analyses are performed with on-off data.
 - First exclusion to cosmic triangle in ALP search
 - Lowest limit for the low mass dark matter range in laboratory experiments