T2K Neutrino Oscillation Analysis

Denis Carabadjac

dcarabadjac@llr.in2p3.fr

Parallel talk/ICHEP 2024 18.07.2024

On behalf of the T2K collaboration

Neutrino oscillations

 U_{PMNS} parametrizes the neutrino flavour mixing and along with $\Delta m_{32}^2 := m_3^2 - m_2^2$ and $\Delta m_{12}^2 := m_2^2 - m_1^2$ quantifies the neutrino oscillations:

Neutrinos created with a specific lepton flavor can later be measured to have a different flavor.

Oscillation probability = P(osc. params; L/E), L - oscillation distance, E - neutrino energy

Experiments with different L/E are necessary to measure different parameters

Accelerator neutrino experiment

Accelerator neutrino experiment

Enhanced muon neutrino beam

Two modes: v_{μ} and \bar{v}_{μ}

 $|L/E \sim 0.5 \text{ km/MeV}$

Carabadjac Denis (LLR/CEA)

Example for the T2K configuration:

- E = [0.2; 3] GeV
- L = 295 km
- δ_{CP} modulates electron appearance probability (asymmetrically for v_e and \bar{v}_e)

- The disappearance $(\nu_{\mu} \rightarrow \nu_{\mu})$ depth depends on $\sin^2 2\theta_{23}$
- The oscillation frequency depends on $|\Delta m^2_{32}|$

The T2R experiment

The T2K oscillation analysis

T2K Oscillation Analysis

T2K oscillation analysis: Strategy

T2K oscillation analysis: Strategy

- MCMC Metropolis—Hastings algorithm
- Simultaneous ND+FD fit
- Obtains posteriour distribution on the parameters

- Grid search
- Gradient descent and importance sampling MC marginalisation
- ND priors from the another fitter
- Feldman-Cousins method for C.L. calculation

Officialised one month ago

Main updates:

- +9% of data in neutrino mode (1.97×10²¹ \rightarrow 2.14×10²¹ POT)
- It is first data taken after Gd loading in SK (0.01% Gd doping)
- Improved SK detector systematics evaluation
- Additional selections to distinguish Michel electrons from neutrons tagged events

T2K

Oscillated neutrino events spectra

Carabadjac Denis (LLR/CEA)

July 18th, 2024

Carabadjac Denis (LLR/CEA)

Carabadjac Denis (LLR/CEA)

The latest T2K results: CP-violation

suppression simulated data set CP-C is not excluded with 90% C.L.

The latest T2K results: Mass ordering

$$\Delta m_{32}^2$$

$$|\Delta m_{32}^2| = 2.521^{+0.037}_{-0.050} \times 10^{-3} eV^2/c^4$$

 $\varepsilon_{\sigma} = 1.7\%^*$

T2K perform robustness studies of the interaction model. For some of them we observe bias in Δm_{32}^2 inference – additional smearing 0.031×10⁻³ eV²/c⁴ is applied for $\Delta \chi^2$

Carabadjac Denis (LLR/CEA)

Comparison with the previous analysis

Small improvements in precision measurements over previous T2K analysis
Consistent results comparing with previous analysis

Conclusion

- New T2K oscillation analysis presented which includes:
- New data: + 9% of data in neutrino mode
- First data after Gd loading
- Improved SK detector systematics
- New results slightly improve the precision and are consistent with the previous analysis
 - CP-conservation excluded at 90% C.L.
 - Weak preference of Normal Ordering
 - Weak preference of Upper Octant

$$\begin{split} \delta_{CP} &= -2.08^{+1.33}_{-0.61} \\ |\Delta m^2_{32}| &= 2.521^{+0.037}_{-0.050} \times 10^{-3} \ eV^2/c^4 \\ \sin^2 \theta_{23} &= \begin{cases} 0.568^{+0.014}_{-0.036} - & \text{Upper} \\ 0.475^{+0.007}_{-0.011} - & \text{Lower} \\ 0.\text{ octant} \end{cases} \end{split}$$

The future oscillation analysis improvements in T2K:

- Beamline has been upgraded → Beam power reached 800 kW → Much more data are coming.
- ND280 Upgrade is fully installed \rightarrow New measurements at ND280, allowing to better constrain the systematics (flux and x-sec) for the incoming high statistics.

Many promising T2K oscillation analyses are expected in future!

BACKUP

- Off-Axis ND280
- Constrains flux and x-sec systematics in the T2K oscillation analysis
- Upgrade finalized in 2024
- WAGASCI/BabyMIND
- Installed in 2019
- Cross-sections on water
- On-Axis INGRID
- Monitors v_{μ} beam intensity and direction

Carabadjac Denis (LLR/CEA)

History of the T2K oscillation analysis

Key publications in oscillation analysis

lart	First v_{μ} analysis	$\sin^2 \theta_{13} = 0$ excl. with 7.3 σ	First ν_{μ} + ν_{e} joint fit	First $v + \overline{v}$ joint fit CP-C excl. with 90%	$\begin{array}{c} \textbf{CP-C excl.} \\ \textbf{with } \sim 2\sigma \end{array}$	The latest publication
2010	2013 PRL 111	2014 PRL 112	2015 PRL 91	2017 PRL 118	2020 Nature	2023 Eur. Phys
Beam Power, kW	200	220	220	230	500	500
Statistics, 10 ²⁰ POT	3.01 ν	6. 57 ν	6.57 v	7.482 ν +7.471 ν	14.9ν +16.4ν	19.7ν +16.4ν
# syst. params	48	27	83	98	119	141
# Far Det. samples	1	1	2	4	5	5

Bayesian results

Jarlskog invariant

Bayesian results

Fitter details

- In fiTQun, the sub-events recorded after the main-ring event are treated as decay electron candidates.
 - Run 1-10: ~ 5% of decay electron candidates are neutron captures.
 - > Run 11:~70% of neutron captures.
- New cut designed to remove neutron captures from the decay electron signal

The new cut:

- 1. Accept all events with $dt < 1.5 \,\mu s$.
- 2. Reject all sub-events with

 $(dt > 20 \,\mu s) \cup (dt < 20 \,\mu s \cap dt > 0.75 \,\text{N50} - 7.5)$

Decay electron selection efficiency and purity $\sim 99\%$

It is applied to all Runs, not only Run11!

Carabadjac Denis (LLR/CEA)

Nov 10th, 2023

dt -time difference between particle creation time

and primary particle creation time

N50 –number of hits in 50ns window centred at

Decay electron candidates in Run 1-10 MC

FDS: Low momentum excess in the 1Re1de sample

- For OA2023: roughly evaluate the effect
- Create a fake data: scale the low pe bin by +100 % & evaluate the impact on contours.