42nd International Conference on High Energy Physics (ICHEP 2024) Prague, Czech Republic 18th - 24th July 2024

The ND280 Upgrade of the T2K experiment

— Shivam Joshi —

CEA Saclay / IRFU / DPhP

19th July 2024

On behalf of the T2K collaboration

universite

PARIS-SACLAY

Contents

4

Conclusion

T2K experiment and its near detector- ND280

The T2K experiment: Tokai to Kamioka

Purpose of the near detector

Constrained by near detector

- Near detector (ND) measures beam spectrum and flavor > composition before oscillations.
- ND measurements constrain flux and v-nucleus cross-> section model parameters and propagate to far detector.

Different detector systematics affect far detector (FD) and ND due to different detectors used.

Reconstructed Neutrino Energy [GeV]

17.3%

(pre-ND fit)

T2K near detector: ND280 (before upgrade)

Detector installed inside the UA1/NOMAD magnet (0.2 T)

- > A detector optimized to measure π^0 (POD)
- An electromagnetic calorimeter to distinguish tracks from showers

Event display of v interaction

A target-tracker system composed of:

- > 2 Fine Grained Detectors (target for v interactions).
 - FGD1 is pure scintillator,
 - FGD2 has water layers interleaved with scintillators
- > 3 vertical Time Projection Chambers: reconstruct momentum and charge of particles, PID based on measurement of ionization

ND280 upgrade: motive and components

Limitations of original ND280 design

> Low angular acceptance (as opposed to 4π coverage at Super-K) \longrightarrow Mostly reconstruct forward going tracks entering the TPCs.

- > Low efficiency to track low momentum protons \longrightarrow Have to use lepton kinematics only for E, reconstruction.
- No capability to detect/reconstruct neutrons.
- Limited ToF information resulting in out-of-fiducial-volume (OOFV) background.
- > Insufficient v_e background estimation.

$$E_{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 + m_l + 2(m_n - E_b)E}{2(m_n - E_b - E_l + p_l \cos \theta_l)}$$

19th July 2024

ND280 upgrade

P0D replaced with a new scintillator target (Super-FGD), two High-Angle TPCs and six Time-of-Flight planes.

- Super-FGD allow to fully reconstruct tracks in 3D lower threshold and excellent resolution to reconstruct protons at any angle.
 - Neutrons will also be reconstructed via proton recoil.
- High-Angle TPCs (x 2) allow to reconstruct muons at any angle with respect to beam.
 - Readout using resistive Micromegas.
- ToF planes (x 6) allow to veto particles originating from outside the ND280 fiducial volume.

Improvements with ND280 upgrade

 4π acceptance for outgoing muons thanks to high angle detection by HATPC.

Decrease in proton detection threshold and improved efficiency over entire momentum range.

- → Better estimation of E_v^{true} using E_{vis} , which utilizes lepton and hadron kinematics. $E_{vis} = E_\mu + T_N$
- Made possible due to improved proton and neutron detection.

Super-Fine Grained Detector (SFGD)

- > A fully active high granularity scintillator target/detector.
 - Total volume $\approx 192 \times 182 \times 56 \text{ cm}^3$
 - Fiducial mass \approx 2 tons
- <u>Composition</u>- 2 million optically isolated cubes with 3 orthogonal 1.5 mm diameter holes each.
 - Dimensions $\approx 1 \times 1 \times 1 \text{ cm}^3$
- Readout- 55000 WLS fibers with MPPCs at one end.
- Characteristics- 3D track reconstruction, 4π acceptance, improved hadron reconstruction, PID.

19th July 2024

SFGD installation

SFGD installed in the ND280 pit in October 2023

Expected performance from SFGD

First neutrino interactions recorded in SFGD!

Shivam Joshi | The ND280 Upgrade of the T2K experiment

SFGD cosmics data results

- new SFGD data
- Observed light (p.e) recorded as a function of distance from MPPC to characterize attenuation length.
- Information from orthogonal fibers allow for a more reliable characterization.

Measured attenuation length consistent with WLS fibers specifications.

Select hits with LY > 40 p.e. in all three directions.

- Compare mean time of hit with mean time of event.
- Time resolution \approx 1.2 ns.

Time resolutiion

HATPC instrumented with 16 ERAMs

High Angle TPC (HATPC)

- Two field cages joined at the central cathode plane.
- Each anode plane instrumented with 8 Encapsulated Resistive Anode Micromegas (ERAM). [16 ERAMs per HATPC]
- <u>Purpose</u>- 3D track reconstruction, PID, tracking high angle and backward-going particles.

- Readout using ERAM instead of standard bulk Micromegas.
 - Charge spreading over multiple pads
 - Good spatial resolution with fewer and larger pads.
 - Suppression of sparks.
 - Better E-field uniformity.

bulk Micromegas (used in v-TPC)

resistive Micromegas (used in HATPC)

15

19th July 2024

Shivam Joshi | The ND280 Upgrade of the T2K experiment

HATPC installation

bottom HATPC installed in Sept. 2023

top HATPC installed in April 2024

ERAM characterization

RC map of ERAM-28 (RC characterizes charge spreading in ERAM)

X-ray test bench at CERN

- ERAMs are characterized using X-ray test bench at CERN.
- Detailed physical model developed for simultaneous extraction of RC and gain of ERAM. (<u>https://doi.org/10.1016/j.nima.2023.168534</u>)
- Pad-by-pad RC, gain and energy resolution is obtained for all ERAMs.

37 ERAMs produced and characterized

ERAM-01	ERAM-14	ERAM-24	🗶 ERAM-39
eram-02	ERAM-15	🕂 ERAM-26	X ERAM-40
eram-03	ERAM-16	🕂 ERAM-27	洋 ERAM-41
eram-07	ERAM-17	🕂 ERAM-28	💢 ERAM-42
eram-09	ERAM-18	🕂 ERAM-29	💢 ERAM-43
eram-10	ERAM-19	🕂 ERAM-30	洋 ERAM-44
eram-11	ERAM-20	🕂 ERAM-36	🙁 ERAM-45
eram-12	ERAM-21	ERAM-37	💢 ERAM-46
eram-13	ERAM-23	🕂 ERAM-38	洋 ERAM-47
¥ ERAM-48			

Shivam Joshi | The ND280 Upgrade of the T2K experiment

Xnad

HATPC cosmics data results

Spatial resolution

dE/dx resolution

Momentum resolution

- dE/dx resolution better than 10 %.
- Behaves as expected.

- Spatial resolution $\approx 500 \ \mu m$.
- In reasonable agreement with MC.
- Momentum resolution better than 10% for vertical muons with momenta < 1.2GeV/c and L > 600 mm.

Time-of-Flight (ToF) detector

Su]

esolution

0.2

0.3

0.25

0.15

0.05

- 6 ToF planes completely enclose b-HATPC + SFGD + t-HATPC.
- Composition- 20 cast plastic scintillator bars (EJ-200), each with dimensions $12 \times 1 \times 230$ cm³.
- Readout- 8 SiPM at each end of scintillator bar.
- Purpose-
 - Veto inward-going background.
 - Particle identification through timing information.
 - Provide cosmic trigger for SFGD and HATPCs.
 - Measure crossing time of charged particles.

- Timing resolution of a scintillator bar tested using cosmic test bench.
 - (A. Korzenev et al 2022 JINST 17 P01016)
- Timing resolution ~ 140 ps from any particle incidence position.
- ToF can clearly resolve individual bunches in a neutrino beam spill.

19th July 2024

Shivam Joshi | The ND280 Upgrade of the T2K experiment

ToF installation

ND280 upgrade: current status

ND280 upgrade status: Completed!

Installation of upgrade detectors was completed in May 2024

First neutrino interactions with full ND280 upgrade!

June 2024

Conclusion

- Upgrade of ND280 has been successfully completed in May 2024!
- > First neutrino interactions with fully upgraded ND280 were recorded last month.
- First physics run with full ND280 upgrade and increased beam power (800 kW) completed last month.
- > All the upgrade detectors are working well.
- Physics analysis with full suite of upgrade detectors and increased beam power is currently ongoing!

Thank you for your attention!

Back-up

SFGD: Tests and Prototypes

24 × 8 × 48 cubes

- SFGD prototype comprising 9216 cubes arranged in 24 × 8 × 48 array tested using CERN-PS T9 beamline with 0.2 T magnetic field.
- Key findings-

(A. Blondel et al 2020 JINST 15 P12003)

- Optical cross-talk between adjacent cubes ≈ 3% per cube side.
- Timing resolution for 1 readout channel ≈ 0.97 ns.
- dE/dx resolution **better than 10%** obtained when information from more than 40 cubes is used.
- Ability to differentiate between $e^{-/+}$ and γ .

v/s

no. of cube layers traversed

v/s

dE/dx resolution

19th July 2024

Mean dE/dx

SFGD: Tests and Prototypes

8 × 8 × 32 cubes (US – Japan prototype)

- Two SFGD prototypes tested at LANL using neutron beam with energies upto 800 MeV. (Phys. Sci. Forum 2023, 8(1), 29)
- Aim- To measure total neutron cross-section on CH target.
- Neutron detection via proton recoil.
- Cross-section measured using 'extinction method'.

$$N(z) = N_0 e^{-T\sigma_{\rm tot} z}$$

> Total energy-integrated cross-section \approx (0.36 ± 0.05) barn.

Neutron – CH cross-section v/s Kinetic energy

Neutron detection

HATPC: Tests and Prototypes

vls

HATPC prototype with ERAM-01

HATPC performance tested through multiple test beam campaigns at CERN and DESY.

- <u>CERN 2018</u>- 1 m drift distance HARP field cage with MM0-DLC1 ERAM (NIMA 957 (2020) 163286)
- <u>DESY 2019</u>- 15 cm drift distance field cage prototype with MM1-DLC1 ERAM (NIMA 1025 (2022) 166109)

Spatial resolution

• <u>DESY 2021</u>- 1 m drift distance field cage prototype with ERAM-01 (NIMA 1052 (2023) 168248)

Spatial resolution better than 800 µm and dE/dx resolution better than 10% obtained for all the incident angles and drift distances of interest.

19th July 2024

Shivam Joshi | The ND280 Upgrade of the T2K experiment

dE/dx resolution