

Neutrino oscillation physics in JUNO ICHEP 2024

Steven Calvez on behalf of the JUNO collaboration ICHEP 2024 July 18th 2024

Jiangmen Underground Neutrino Observatory

 JUNO is a 20-kton Liquid Scintillator neutrino observatory located in Southern China.

Jiangmen Underground Neutrino Observatory

- JUNO is a 20-kton Liquid Scintillator neutrino observatory located in Southern China.
- JUNO studies reactor electron antineutrino **oscillations** over a 52.5 km medium baseline to:

TAO

- Determine the **neutrino mass ordering**. •
- Measure Δm_{31}^2 , Δm_{21}^2 , and $\sin^2 2\theta_{12}$ with sub-percent precision.

 \overline{v}_e

JUNO

Jubotech

DADAA MO

8 reactors

26.6 GW_{+h}

Large statistics

Energy resolution: 2.95% @ 1MeV

Low background

Precise knowledge of reactor spectra

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
- Energy resolution: 2.95% @ 1MeV
 ✓ High photon yield, highly transparent LS

- Low background
 - ✓ Material screening, clean environment

Precise knowledge of reactor spectra

- 20kton LS: LAB + 2.5g/L PPO + 3 mg/L bis-MSB
 ▶ 1665 PE/MeV arXiv:2405.17860
- Osiris: measures radiopurity of LS.

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - $\checkmark\,$ High photon yield, highly transparent LS

- Low background
 - ✓ Material screening, clean environment

• Precise knowledge of reactor spectra

Yangjiang

- Two nuclear power plants
- 8 reactor cores
- 26.6 GW_{th}

Reactor	Power (GW_{th})	Baseline (km)	IBD Rate (day^{-1})	Relative Flux (%)
Taishan	9.2	52.71	15.1	32.1
Core 1	4.6	52.77	7.5	16.0
Core 2	4.6	52.64	7.6	16.1
Yangjiang	17.4	52.46	29.0	61.5
Core 1	2.9	52.74	4.8	10.1
Core 2	2.9	52.82	4.7	10.1
Core 3	2.9	52.41	4.8	10.3
Core 4	2.9	52.49	4.8	10.2
Core 5	2.9	52.11	4.9	10.4
Core 6	2.9	52.19	4.9	10.4
Daya Bay	17.4	215	3.0	6.4

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
- Low background
 - ✓ Material screening, clean environment

• Precise knowledge of reactor spectra

• 17,512 20" PMTs + 25,600 3" PMTs

		LPMT (20	-inch)	SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection		Dynode	MCP	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate [kHz]	Bare	15.3	49.3	0.5	
	Potted	17.0	31.2		
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%		3%	
Reference		arXiv: 2205.08629		NIM.A 1005 (2021) 165347	

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
- Low background
 - ✓ Material screening, clean environment
 - ✓ 650m or 1800 m.w.e overburden
 - ✓ Efficient veto system (>99.5%)
- Precise knowledge of reactor spectra

- **650m overburden**: 4Hz of cosmic muons in LS
- Top Tracker: <u>arXiv:2303.05172</u>
 - \circ Opera plastic scintillator

The Top Tracker of the JUNO experiment

- Outer Cherenkov Detector:
 - $\circ~$ 35 kton ultrapure water
 - o 2400 20" PMTs
- Veto strategy :

57 reactor $\overline{v_e}$ + 127 ⁹Li + 40 ⁸He events/day **4**7 reactor $\overline{v_e}$ + 0.8 ⁹Li/⁸He events/day

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 2.95% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
- Low background
 - ✓ Material screening, clean environment
 - ✓ 650m or 1800 m.w.e overburden
 - ✓ Efficient veto system (>99.5%)
- Precise knowledge of reactor spectra
 - ✓ Satellite detector TAO

- TAO can perform a precise measurement of reactor v
 _e spectrum:
 - \circ 44m from reactor \rightarrow 10³ IBD events per day
 - 2.8 ton Gd-LS, 1 ton fiducial volume
 - o 4500 PEs/MeV
 - SiPM: 94% coverage with 50% PDE
 - Energy resolution <2% @ 1 MeV</p>
 - Sub-percent shape uncertainty
- Tested at IHEP. Installation at Taishan power plant in 2024. Data taking in 2025.

Updates on JUNO construction

- Support Structure completed.
- Acrylic Vessel :
 - \circ Production complete.
 - o 17/23 layers installed.
- More than half of 20" and 3" PMTs installed.
- Detector completion expected by end 2024.
- First data taking in 2025.

Physics searches with JUNO

JUNO's design enables a rich physics program.

Core Collapse Supernova

Reactor neutrino oscillations

- 47 Inverse Beta Decay events per day expected:
 - Prompt + delayed signals to strongly suppress backgrounds.
 - o 7% backgrounds, mostly below 3MeV.
 - \circ ~10⁵ IBD candidates in 6 years.
 - Excellent energy resolution (<3% @ 1 MeV) also ensured by:

Precision measurement of neutrino oscillations parameters

- Most precise measurements of half of the neutrino oscillation parameters in 100 days.
- Ultimately, an order of magnitude improvement over current knowledge of Δm²₃₁, Δm²₂₁, and sin²θ₁₂.

100 days 6 years 20 years 10^2 - Stat.+syst. \cdots Stat. only $\Delta m_{31}^2 \star \Delta m_{21}^2$ $\sin^2\theta_{12} \star \sin^2\theta_{13}$ 10^0 $\frac{10^2}{10^2}$ 10^3 10^4 10^5 [UNO Data Taking Time [days]

Chin. Phys. C 46 (2022) 12

	Central Value	PDG2020	100 days	6 years	20 years
$\Delta m_{31}^2 \; (\times 10^{-3} \; \mathrm{eV^2})$	2.5283	±0.034 (1.3%)	±0.021 (0.8%)	±0.0047 (0.2%)	±0.0029 (0.1%)
$\Delta m_{21}^2 \; (\times 10^{-5} \; \mathrm{eV}^2)$	7.53	±0.18 (2.4%)	±0.074 (1.0%)	±0.024 (0.3%)	±0.017 (0.2%)
$\sin^2 \theta_{12}$	0.307	±0.013 (4.2%)	±0.0058 (1.9%)	±0.0016 (0.5%)	±0.0010 (0.3%)
$\sin^2 \theta_{13}$	0.0218	±0.0007 (3.2%)	±0.010 (47.9%)	±0.0026 (12.1%)	±0.0016 (7.3%)

Determination of the neutrino mass ordering

- JUNO sensitivity to the neutrino mass ordering: <u>arxiv:2405.18008</u>
 - Updated signal and background rates
 - Improved predicted energy resolution arXiv:2405.17860
 - Reactor shape uncertainty from TAO
- > JUNO reactor neutrino oscillation analysis alone provides a median 3σ sensitivity to NMO in 6.5 years!
- Combination with atmospheric neutrino oscillation analysis in progress.

Atmospheric neutrino oscillations

- First time atmospheric neutrino oscillations will be studied with liquid scintillator:
 - $\circ~$ e / μ separation
 - $\circ \nu \, / \, \bar{\nu}$ separation
 - o Neutrino energy
 - Track direction

- Plan to install all **spare PMTs** on top of water pool to further **improve PID** and **direction reconstruction**.
- Combine reactor and atmospheric analyses to boost the NMO sensitivity.

Conclusions

- Multipurpose 20-kton Liquid Scintillator neutrino observatory with a **rich physics program**.
- JUNO detector construction well underway: first data next year!
- > JUNO will measure Δm_{31}^2 , Δm_{21}^2 , and $\sin^2\theta_{12}$ with unprecedented accuracy <0.5%.
- > JUNO can determine the
 Neutrino Mass Ordering at 3σ significance in 6.5 years.

76 institutes, 18 countries, >700 collaborators

Backup

Precision measurement

• Statistical and systematic uncertainties for 6 years.

Δm_{31}^2	1σ (%)		Δm_{21}^2	1σ (%)	
Statistics	0.17	Statistics		0.16	
Reactor:			Reactor:		
- Uncorrelated	< 0.01		- Uncorrelated	0.01	
- Correlated	0.01		- Correlated	0.03	
- Reference spectrum	0.05		- Reference spectrum	0.07	
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14	
Detection:			Detection:		
- Efficiency	0.01		- Efficiency	0.02	
- Energy resolution	< 0.01		- Energy resolution	0.01	
- Nonlinearity	0.04		- Nonlinearity	0.05	
- Backgrounds	0.04		- Backgrounds	0.18	
Matter density	0.01		Matter density	0.01	
All systematics	0.08		All systematics	0.27	
	0.10		Total	0.32	
Total	0.19	0 0.1 %	. 2-	C	0.0 0.2
Total	0.19	0 0.1 %		C	0.0 0.2
Total $\sin^2 heta_{12}$	0.19 0.0 1σ (%)	0 0.1 %	$\sin^2\theta_{13}$	1σ (%)	0.0 0.2
Total $\sin^2 \theta_{12}$ Statistics Beactor:	0.19 0.0 1σ (%) 0.34	0.1 %	$\sin^2 \theta_{13}$ Statistics	1σ (%) 8.94	0.0 0.2 %
Total sin ² θ ₁₂ Statistics Reactor:	0.19 0.0 1σ (%) 0.34		$\sin^2 \theta_{13}$ Statistics Reactor:	1σ (%) 8.94	0.0 0.2 %
Total Sin ² $ heta_{12}$ Statistics Reactor: - Uncorrelated - Correlated	0.19 0.0 1σ (%) 0.34 0.10		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated	1σ (%) 8.94 2.53 6.83	0.0 0.2 %
Total Sin ² $ heta_{12}$ Statistics Reactor: - Uncorrelated - Correlated Reference construm	0.19 0.0 1σ (%) 0.34 0.10 0.27 0.09 0.99		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated Pafororo construm	1σ (%) 8.94 2.53 6.83	0.0 0.2 %
Total Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum Encert Husters Fuel	0.19 0.0 1σ (%) 0.34 0.10 0.27 0.09 0.09		sin ² θ_{13} Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Enert Nuclear Engl	1σ (%) 8.94 2.53 6.83 3.48	
Total Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel Non conviliarium	0.19 0.0 10 (%) 0.34 0.10 0.27 0.09 0.05 0.10		Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	10 (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ_{12} Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	0.19 0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.5		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Dataction:	10 (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ_{12} Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	0.19 0.0 0.0 0.34 0.34 0.10 0.27 0.09 0.05 0.10 0.23		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	10 (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	0.19 0.0 0.70 0.34 0.10 0.27 0.09 0.05 0.10 0.27 0.09 0.05 0.10 0.23		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity	0.19 0.0 0.34 0 0.10 0.27 0.09 0.05 0.10 0.27 0.09 0.05 0.10 0.23 0.010 0.09		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ ₁₂ Statistics Reactor: Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds	0.19 0.0 0.34 0 0.10 0.27 0.09 0.05 0.10 0.23 0.010 0.23 0.011 0.23 0.012 0.023 0.013 0.023 0.014 0.020		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ ₁₂ Statistics Reactor: Uncorrelated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds Matter density	0.19 0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.27 0.09 0.05 0.10 0.23 0.01 0.23 0.01 0.09 0.020 0.07		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65	
Total Sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	0.19 0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.010 0.23 0.01 0.23 0.01 0.09 0.023 0.01 0.09 0.20 0.07 0.07		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98 9.16	

Solar neutrinos

• JUNO sensitive to both high and intermediate energy solar neutrinos.

High energy solar neutrinos

- Model independent detection of ⁸B neutrinos via three interaction channels CC, NC and ES:
 - > 5% uncertainty on ⁸B neutrino flux
 - > 20% uncertainty on Δm_{21}^2
 - > 8% uncertainty on $sin^2\theta_{12}$

Channels	Threshold	Signal	Event nu	mbers
	[MeV]		$[200 \text{ kt} \times \text{yrs}]$	after cuts
$CC \qquad \nu_e + {}^{13}C \rightarrow e^- + {}^{13}N\left(\frac{1}{2}; \text{gnd}\right)$	$2.2 { m MeV}$	$e^- + {}^{13}N$ decay	3929	647
NC $\nu_x + {}^{13}\text{C} \rightarrow \nu_x + {}^{13}\text{C}(\frac{3}{2}; 3.685 \text{ MeV})$	$3.685 { m MeV}$	γ	3032	738
ES $\nu_x + e \rightarrow \nu_x + e$	0	e^-	$3.0{ imes}10^5$	$6.0{ imes}10^4$

Intermediate energy solar neutrinos

- Possible thanks to **radiopurity** efforts.
- World leading constraints after a few years.
- Day/Night asymmetry sensitivity <1%.

⁷Be v

pep v

³Ν-ν

°O-v

1.1 1.2 1.3 1.4 1.5

800 1000 1200 1400 1600 1800 2000 2200 2400 IBD radiopurity

Baseline radiopurity

Ideal radiopurity

BX-like radiopurity

10⁷

 10^{6}

10⁵

10 10³

102 10

0.5 0.6 0.7

0.8 0.9 1

Events / p.e.

Proton decay

- $\mathbf{p} \rightarrow \overline{\mathbf{v}} \mathbf{K}^+$: three-fold coincidence to detect proton decay with high efficiency (36.9%).
- Good energy resolution helps reduce the backgrounds: less than 0.2 events after 10 years.
- Competitive limit on proton lifetime of
 9.6 × 10³³ years for 200 kton-year exposure.
- More details in arXiv:2212.08502.

• **TAO** can search for **sterile neutrinos**.

TAO

- Sub-percent precision on reactor neutrino spectrum shape.
- Status of JUNO's Taishan Antineutrino Observatory

Core collapse supernova neutrinos

• Core collapse supernova neutrinos detection channels :

Process	Num. Events (E _{thr} = 0.2MeV)
<u>IBD</u> $\overline{ u}_e + p ightarrow e^+ + n$	~5000
<u>pES</u> $\boldsymbol{\nu} + \boldsymbol{p} ightarrow \boldsymbol{\nu} + \boldsymbol{p}$ (${}^{^{\scriptscriptstyle (}} \overline{\boldsymbol{ u}}_{e,\mu, au}^{^{\scriptscriptstyle (}})$)	~2000
eES $\nu + e \rightarrow \nu + e$ ($(\overline{\nu}_{e,\mu,\tau})$)	~400
CC $ \tilde{\nu}_e + {}^{12}C \to e^{-(+)} + {}^{12}N({}^{12}B)$	~200
NC $\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$ ($(\overline{\nu}_{e,\mu,\tau})$)	~300
$\rightarrow \gamma(15.11 \text{MeV})$	

DSNB

- **DSNB** 2-4 per year (w/o PSD)
- 3σ discovery potential in 3 years (reference model).

Geoneutrinos

- **Geoneutrinos**: 400 $\overline{\nu_e}$ per year (0-3MeV)
 - More than Borexino and KamLAND combined in 1 year. To date, Borexino + KamLAND = ~200 events.
- Decay of radionuclides (U/Th/K) within the Earth.
- Measure U and Th abundances, U/Th ratio in crust and mantle : 30% uncertainty in 10 years.
- Probes : Earth's formation, Mantle convection, Plate tectonics, Earth's magnetic field production

Synergy between JUNO and NOvA+T2K

- A **5σ determination of NMO** is possible by combining **JUNO** and **NOvA+T2K's results**.
- See <u>arXiv:2008.11280</u>

