

NOvA Experiment

Kathryn Sutton

New 2024 Oscillation Result

Kathryn Sutton

Celebrating 10 years of NOvA data taking

New 2024 Oscillation Result

Celebrating new 1.018MW NuMI beam power record. See poster from K. Yonehara: <u>Achievement in Beam</u> <u>Power Records for the NOvA Target System</u>

Kathryn Sutton

Improvements to Oscillation Analysis

Kathryn Sutton

Improvements to Oscillation Analysis

Improvements to Oscillation Analysis

Low expected event rate but maximum ordering sensitivity from $v_e^- \overline{v}_e$ asymmetry at lower E_v

Kathryn Sutton

Low Energy **v** Sample

Previously excluded

Neutrino-mode data event selected in the far detector by the low energy $v_2 2024$ analysis.

The reconstructed energy is 1.4 GeV.

BDT to reject backgrounds

Kathryn Sutton

Results with 2024 Data Set

Far Detector Muon (Anti)Neutrinos

We observe 384 v_{μ} and 106 $\overline{\nu}_{\mu}$ candidates in the FD. The central value and uncertainties are constrained by selections in the high-statistics, functionally identical ND via extrapolation.

Far Detector Muon (Anti)Neutrinos

We observe 384 v_{μ} and 106 $\overline{\nu}_{\mu}$ candidates in the FD. The central value and uncertainties are constrained by selections in the high-statistics, functionally identical ND via extrapolation.

ICHEP 2024 - Prague

Simulation improvements

Far Detector Electron (Anti)Neutrinos

We observe 181 v_e and 32 \overline{v}_e candidates in the FD. The central value and uncertainties are similarly constrained by near-far detector extrapolation.

Kathryn Sutton

Far Detector Electron (Anti)Neutrinos

We observe 181 v_e and 32 \overline{v}_e candidates in the FD. The central value and uncertainties are similarly constrained by near-far detector extrapolation.

Kathryn Sutton

Far Detector Electron (Anti)Neutrinos

We observe 181 v_e and 32 \overline{v}_e candidates in the FD. The central value and uncertainties are similarly constrained by near-far detector extrapolation.

Kathryn Sutton

Fit to Oscillation Parameters

Fit to Δm_{32}^2 , $\sin^2 \theta_{23}$, $\sin^2 2\theta_{13}$, δ_{CP}

Kathryn Sutton

Fit to Oscillation Parameters

Fit to Δm_{32}^2 , $\sin^2 \theta_{23}$, $\sin^2 2\theta_{13}$, δ_{CP} Consider three θ_{13} possibilities: Daya Bay 2D ($\Delta m^{2}_{32}, \theta_{13}$) Daya Bay constraint θ₁₃ unconstrained 1D θ_{13} constraint or or (NOvA only) $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$ 0.08 0.085 0.09 0.09

0.075

sin220,,

Kathryn Sutton

Reconstructed ve energy (GeV)

0.5 1 1.5

Comparison 2020 and 2024 Results

*Note: results use different choices of 1D reactor constraint NOvA 2020: <u>2019 PDG avg 013</u> NOvA 2024: <u>Daya Bay 2023 1D 013</u>

See strong consistency between 2020 and 2024 results, with the improved

constraint in ~same regions

2024 Results: **O**_{CP}

Statements on **ō**_{CP} dependent on mass ordering determination

CP-conserving points favored in **normal ordering**

CP-conservation outside 3σ interval in **inverted ordering**, preference around maximal violation at $3\pi/2$

NOvA Preliminary

7/18/24 | Caltech 25

Small preference for normal mass ordering

NOvA Preliminary

Preference for **normal mass ordering** is enhanced by choice of reactor constraint

NOvA-only $|\Delta m^2_{32}|$ result has world-leading precision of ~1.5%, best single-experiment measurement.

Kathryn Sutton

2024 Results: sin²**0**₂₃

NOvA Preliminary

In the $v_2 - v_3$ sector, NOvA measurements are consistent with accelerator, atmospheric, and joint results

IceCube 2024: <u>arXiv:2405.02163</u> T2K 2022: <u>10.5281/zenodo.6683821</u> MINOS+ 2020: <u>Phys. Rev. Lett. 125, 131802</u> SK 2023: <u>Phys. Rev. D109, 072014</u> NOvA+T2K 2024: <u>KEK IPNS seminar</u>, <u>FNAL JETP seminar</u> T2K+SK 2024: <u>arXiv:2405.12488</u>

Kathryn Sutton

Summary

More NOvA Talks at ICHEP:

- <u>Triple Differential Muon Antineutrino Charge Current</u> Inclusive Cross Section Measurement in NOvA (P. Singh)
- Deep Learning Event Reconstruction at NOvA (W. Wu)

- The new 2024 analysis is a major update to NOvA's oscillation result
 - Doubled neutrino-mode dataset with 10 years of neutrino & antineutrino data
 - Improvements to the detector characterization, cross section uncertainties, and a new low-energy v_p sample
- Most precise single-experiment measurement of Δm_{32}^2 (1.5%)
- Statements on **CP violation strongly coupled to mass-hierarchy determination**
- Strong synergy with reactor measurements
- The best is yet to come!
 - Goal to double the anti-neutrino mode data in the final data set
 - Test beam results could address some of the largest systematic uncertainties in NOvA
 - Broader program including sterile searches, NSI, cross section measurements, cosmic ray physics, exotics... and more!

Thanks!

J. Wolcott

ND data distributions

Kathryn Sutton

FD data: v_{μ} in E_{had}/E_{v} quantiles

 $\label{eq:strapolation} \begin{array}{l} \text{Extrapolation procedure is performed in} \\ |\mathbf{p}_t| \text{ subpopulations of } E_{had}/E_{\nu} \text{ quartiles} \\ \text{Resolutions range from Q1 6.5\% (5.4\%) to Q4 12.6\% (11.2\%) in } \nu \ (\overline{\nu}) \text{ mode} \end{array}$

Kathryn Sutton

ICHEP 2024 - Prague

J. Wolcott

FD Selections

	Neutrino Beam			Anti-neutrino Beam	
	$ u_{\mu}$	$ u_e$	LowE ν_e	$ar{ u}_{\mu}$	$\bar{\nu}_e$
$ u_{\mu} ightarrow u_{\mu}$	372.7	4.0	0.3	24.7	0.2
$\bar{\nu}_{\mu} \rightarrow \bar{\bar{\nu}}_{\mu}$	24.7	0.1	0.0	71.8	0.2
$\nu_{\mu} \rightarrow \nu_{e}$	0.4	121.6	2.9	0.0	2.1
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	0.0	1.7	0.1	0.0	18.2
Beam $\nu_e + \bar{\nu}_e$	0.1	26.3	0.8	0.0	6.5
NC	5.5	16.3	5.0	0.8	2.0
Cosmic	4.6	5.7	0.5	0.7	1.1
Others	1.5	0.8	0.1	0.2	0.1
Signal	398.2	121.6	2.9	96.7	18.2
Background	11.3	54.9	6.8	1.7	12.2
Best fit	409.5	176.5	9.7	98.4	30.4
Observed	384.0	169.0	12.0	106.0	32.0

Table: The Ana2024 observed and predicted $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance and $\nu_{e}(\bar{\nu}_{e})$ appearance events at the Far Detector including the lowE ν_{e} events. The predicted number of events are scaled to the Ana2024 NOUO best-fit values.

Uncertainties on Oscillation Parameters

Systematic Uncertainties

Kathryn Sutton

2024 Results: 0₂₃

Mild preference for upper octant (69% probability) that emerges from applying the reactor constraint

Maximal mixing is allowed at $< 1\sigma$

NOvA Preliminary

7/18/24 | Caltech 36

Kathryn Sutton

Kathryn Sutton

* P. Désesquelles, et al., <u>NIM A307 366-373 (1991)</u>, Z. Kohley, et al., <u>NIM A682 59-65 (2012)</u>

Detector Characterization

Improved Light Production Model

Better modeling of **Cherenkov and Scintillation light in both ND and FD.**

Dedicated bench measurements & in situ stopping muon and proton tracks

Kathryn Sutton

ICHEP 2024 - Prague

Improved n-C Scattering Model

Difference between MENATE_R* and default Geant4.10.4 informs systematic uncertainty.

Cross Section Modeling

Additional Systematic Uncertainties for Pion Production

New cross section uncertainties on resonance and deep inelastic scattering interactions. Increases uncertainty on pion production around peak hadronic visible energy; modest impact on overall CC Inclusive selections.

Kathryn Sutton

Cross section model

Base simulation: GENIE 3.0.6

- No stock comprehensive model configuration (CMC) agrees well with data
- We choose a "theory-driven" set of models* and make *post hoc* adjustments to improve agreement

substituting the Z-expansion QE axial form factor for the dipole one. This combination was not available in the 3.0.6 release, but it may be available in future versions.

Kathryn Sutton

ICHEP 2024 - Prague

J. Wolcott

J. Wolcott

Constraining predictions

×

G

Base Simulation

X

2 3 4

tion probability

ահարտիստի

Correcting ND simulation to agree with data in reco E_{ν} ...

... via Far/Near transformation that comprises well understood effects (beam divergence, detector acceptance) + oscillations

True energy (GeV)

... results in **constrained** FD E_v prediction highly correlated with ND correction

Constrain nominal prediction and effect of systematic uncertainties

- Shift all elements of sim., then redo constraint
- Since post-correction all variations forced to agree at ND, spread at FD is reduced
- Effects that are not shared between detectors unaffected, or increase in some cases (e.g.: calibration)

Subdivide or use different samples to better account for ND/FD differences:

- v_{μ} : differences in resolution, acceptance subdivide by $E_{had}/E_{\nu} \times |p_t|$ [12 bins]
- ν_e bknds: different oscillation behavior constrain vs' parent π and K (beam v_e); subdivide by Michel electron multiplicity (v_µ, NC)

Kathryn Sutton

Comparisons to NOvA+T2K

Note: results use different choices of reactor constraint

Kathryn Sutton

Alternate CCQE model: cRPA (1)

J. Wolcott

Kathryn Sutton

Alternate CCQE model: cRPA (2)

High CNN Nominal Extrap FD Sim **CRPA** Extrap FD Fake Data 1-σ syst. eripheral range Core Reco. v_e energy (GeV) **NOvA Simulation** 26.61x10²⁰ POT-equiv Nominal Extrap FD Sim **CRPA Extrap FD** Fake Data 0.5 1.5 Decenstructed u onora

NOvA Simulation

7/18/24

Caltech 45

Kathryn Sutton

ICHEP 2024 - Prague

J. Wolcott