ICARUS at the Short-Baseline Neutrino program: first results

Lea Di Noto University of Genova and INFN Genova on behalf of the ICARUS collaboration

ICHEP conference 2024

July 18th, 2024

ICHEP 2024 | PRAGUE

The sterile neutrino puzzle

• Anomalies by LSND and MiniBooNE : v_e excess in a v_{μ} beam

The Short Baseline Neutrino Program

- Two LArTPC detectors:
 - SBND: near detector for flux and v-Ar cross section constraint
 - ICARUS: far detector to measure oscillated neutrino spectrum
- Two beams: Booster Neutrino Beam and NUMI (only for ICARUS)

The Short Baseline Neutrino Program

Sterile neutrino search in the 1 eV² mass scale

- by a sensitive search in the ν_{μ} disappearance and ν_{e} appearance channels
- with two functionally identical detectors
- much less sensitive to flux and cross section uncertainties
- very high statistics:
 - O(200k) CC events/year in FD
 - O(2M) in ND
- High statistic measurements of *v*-Argon cross section
- Search for Beyond Standard Model Physics

The ICARUS experiment

- ICARUS T600 is the first large scale LAr-TPC:
 - 2 identical cryostats (3.6 x 3.9 x 19.6 m³)
 - active mass: 470 tons
- 4 Time Projection Chambers:
 - 3 wire planes per anode $(0^\circ, \pm 60^\circ \text{ w.r.t horizontal})$
 - 500 V/cm E field (1.5 m drift)
 - Warm front-end electronics
- Photon Detection System:
 - 360 PMTs coated with TPB behind anode wire planes (90 per anode) for event triggering/timing with light
- Cosmic Ray Tagger :
 - top/side cosmic ray tagger panels (scintillator + SiPM readout)
- 3 m concrete overburden for cosmic γ/n suppression

Installation & physic runs

- Cold commissioning in September 2020
- CRT installation completed in Dec 2021
- Physics run started in June 2022

TOTAL	(PoT)	3,82 10 ²⁰	3.42 10 ²⁰	2.82 10 ²⁰
RUN-3	(Mar-Jul 24)	1.36 1020	-	2.82 10 ²⁰
RUN-2	(Dec 22-Jul 23)	2.05 1020	2.74 10 ²⁰	-
KUN-1		0.41 10-5	0.08 10-3	-

7 Jul, 18^h 2024 Lea Di Noto First results from ICARUS experiment

0.50 µs

PMT flashes

- Events are triggered requiring:
 - at least 4 fired PMT pairs

9 m Drift direction

o

NuMI

Background Beam gate: 9.6 µs

Data

Neutrino event reconstruction

160

60

40 20

140

vµcc 80

- Two reconstruction methods:
 - **Pandora:** a pattern recognition software commonly used in LAr-based detectors
 - **SPINE** a machine-learning based reconstruction chain

- to identify pathologies,
- validate the performance of selection/reconstruction

$1\mu Np \nu_{\mu}CC$ samples

for disappearance analysis with BNB

Fully contained events, with a **muon** with L >50 cm and at least one **proton** track with L >2.3 cm

$1\mu Np \nu_{\mu}CC$ samples

for disappearance analysis with BNB

- Good data/MC agreement in 10% unblinded Run 2 data
- Systematics uncertainties:
 - **detector** ~ 15%
 - can be reduced by improving simulation tuning for residual
 Data/MC discrepancies
 - **flux**: ~ 10%
 - cross-section: ~ 15%
 - reduced to negligible effect in the joint SBN analysis

Example: BNB vµCC 1µNp Pandora selection

Physics with NUMI

- First analysis on v_{μ} CC 1 μ Np
 - one muon with p_{μ} > 226 MeV/c,
 - any protons with p_p between 400 MeV/c and 1 GeV/c,
- Systematic uncertainties included (flux, crosssection, detector)
- Studied over different kinematic variables which encode information about **Final State Interactions**
- Search for BSM scalar decays in $\mu^+\mu^-$

- 8 events observed in comparison with 8 events expected from MC expectations

- mostly from ν_{μ} CC coherent π production;
- No excess was found
- Exclusion contour plots in progress
- see D.Cherdack's talk

Conclusions

- GOALS in the next future:
 - Single-detector neutrino oscillation physics with BNB data by ν_{μ} disappeareance

Analyses ready to proceed to validation with larger control samples in view of the full signal unblinding

- study of v_e disappearance with off-axis NuMI beam, addressing the Neutrino-4 claim
- ν_{μ} cross section measurements with NuMI data
- BSM physics searches with NuMI data: sub-GeV Dark Matter candidates

while waiting for the **joint analysis within SBND** (in commissioning phase)!

Thanks!

