

Triple Differential Muon Antineutrino Charge Current Inclusive Cross Section Measurement in NOvA

42nd International Conference On High Energy Physics (ICHEP 2024), Prague, Czech Republic July 18, 2024

FERMILAB-SLIDES-24-0183-PPD

Prabhjot Singh, on behalf of the NOvA Collaboration

NOvA Experiment

- NOvA is a long-baseline two-detector neutrino oscillation experiment
- Both detectors are filled with liquid scintillator and composed of 67% C, 16% chlorine, 11% H, 3% O, 3% Ti by mass

Prabhjot Singh

 Functionally identical detectors to reduce systematic uncertainties

NOvA Experiment

- NOvA is a long-baseline two-detector neutrino oscillation experiment
- Both detectors are filled with liquid scintillator and composed of 67% C, 16% chlorine, 11% H, 3% O, 3% Ti by mass

Prabhjot Singh

- Functionally identical detectors to reduce systematic uncertainties
- 14.6 mrad off-axis detectors
- Neutrino beam peaks around 2 GeV

ICHEP 2024

NOvA Experiment

- NOvA is a long-baseline two-detector neutrino oscillation experiment
- Both detectors are filled with liquid scintillator and composed of 67% C, 16% chlorine, 11% H, 3% O, 3% Ti by mass

Prabhjot Singh

- Functionally identical detectors to reduce systematic uncertainties
- We use high statistics in the ND to do multidifferential cross section measurements

ICHEP 2024

Queen Mary **University of London**

Prabhjot Singh

of all interaction types, thus we

have an opportunity to measure

cross sections for these processes

Meson exchange currents (MEC) is a dominating model to describe 2p2h process

ICHEP 2024

Interesting Available Energy Regions **NOvA Simulation**

University of London

- NOvA uses total energy of all observable final state hadrons to distinguish various interaction types
- All particles that deposit visible energy in the detector contribute to the available energy

DIS dominated 1-2 GeV Pioneered by MINERvA (Phys. Rev. Lett. 116, 071802 (2016)) **ICHEP 2024** 18 July 2024 6

Overview of the Analysis

- Signal is $\bar{\nu}_{\mu}$ *CC* interaction having interaction vertex in the fiducial volume of the Near Detector
- Process is $\bar{\nu}_{\mu} + A \rightarrow \mu^{+} + X$, A is the target nucleus and X represents all other final state particles
- Benefits of inclusive analysis:
 - High statistics (>900k events)
 - Ties together all neutrino-interaction models

18 July 2024

ICHEP 2024

Overview of the Analysis

- Signal is $\bar{\nu}_{\mu}$ *CC* interaction having interaction vertex in the fiducial volume of the Near Detector
- Process is $\bar{\nu}_{\mu} + A \rightarrow \mu^{+} + X$, A is the target nucleus and X represents all other final state particles

Prabhjot Singh

- Benefits of inclusive analysis:
 - High statistics (>900k events)
 - Ties together all neutrino-interaction models
- Deliverables are \bullet
 - ✓ triple differential cross section in T_{μ} , cos θ_{μ} , and E_{avail}

 \checkmark single differential cross section in E_{ν} and Q^2

ICHEP 2024

18 July 2024

Data Results: $0 < E_{avail} < 100$ MeV

First E_{avail} bin is enhanced in QE, and MEC interactions

GENIE 3.0.6 out of the box is under-predicting data at forward angle angles and higher T_{μ}

GENIE predictions tuned to NOvA-data are able to model data because NOvA tune is MEC enhanced

Prabhjot Singh

ICHEP 2024

18 July 2024

- No theory-based model reproduces our measurement
- For QE, SuSA-v2 model is better than the Valencia model
- For MEC, differences between the SuSA-v2 and Valencia are very small and they both perform poorly to model data

Prabhjot Singh

ICHEP 2024

18 July 2024

Data Results: $300 < E_{avail}$

- Available energy phasespace from 300-600 MeV is rich in RES and DIS interactions with RES dominating
- Here everywhere GENIE predictions are overestimating data

Prabhjot Singh

ICHEP 2024

18 July 2024

- GENIE tune 00 000 is a default tune based on previous GENIE developments
- 02_11a/b tunes are GENIEonly tunes to free-nucleon data that only affects RES/ **DIS** events
- GENIE tunes 02_11a, and 02_11b are performing better than 00_000 tune to model RES dominated interactions in data

Prabhjot Singh

ICHEP 2024

18 July 2024

Data Results: $1 < E_{avail} < 2$ GeV

- Region is dominated by DIS interactions
- GENIE is doing a reasonable modeling of DIS interactions

ICHEP 2024

13

 Bodek-Yang + Pythia is doing a good job in modeling DIS interactions

Prediction/Data

ICHEP 2024

18 July 2024

Results Neutrino Generator Comparisons

18 July 2024

Generators to Data Results: $0 < E_{avail} < 100$ MeV

- GiBUU is doing a good job in modeling QE/MEC interactions
- Both GENIE 3.4.0, and NEUT uses Valencia for QE, only their FSI tunes are different and NEUTs tune is doing better

Prabhjot Singh

ICHEP 2024

18 July 2024

Generators to Data Results: $300 < E_{avail} < 600$ MeV

- In the RES enhanced regions, all generators are performing differently
- GiBUU is mostly underpredicting
- NEUT is generally closer to the data. It uses BS for modeling RES along with its custom tune for FSI

Prabhjot Singh

ICHEP 2024

18 July 2024

- In the DIS rich regions, GiBUU is mostly underpredicting
- GENIE, NuWro, and NEUT are using Bodek-Yang model for DIS but all three have different FSI tunes
- GENIE's FSI tune seems to be doing a better job in modeling DIS interactions

Prabhjot Singh

ICHEP 2024

18 July 2024

'ndof

- χ^2 are calculated using covariance matrices to account for bin-to-bin correlations
- Overall χ^2 are driven strongly by the 0-100 MeV available energy region which has about half of our signal events
- Generators show varying level of agreements to data in different regions of available energy

ICHEP 2024

Single Differential Results

- At low E_{ν} , all generators are under predicting data except GiBUU
- For generators shape agreement in energy is good and disagreements are mostly in normalization
- For Q^2 , GENIE 3.4.0, NEUT, NuWRO, and GiBUU, are underpredicting data

Queen Mary

University of London

NOvA Preliminary

NOvA Preliminary

Prabhjot Singh

NOvA Preliminary

NOvA Preliminary

ICHEP 2024

NOvA Preliminary

18 July 2024

Conclusions

No theory based model reproduces our measurement

Prabhjot Singh

- \checkmark QE: SuSA-v2 agrees better than the Valencia
- ✓ MEC: differences between Valencia, and SuSA-v2 are very small though both performs equally poorly
- ✓ RES: GENIE predictions are over-predicting data. We need more neutrino interaction models to understand these regions
- Various neutrino generators, have different strengths in different regions of available energy
- We plan to release our data to enable model builders to tune interaction models, look forward to it when released with paper

NOvA Collaboration

Prabhjot Singh

> 240 people, ~ 50 institutions, 7 countries

18 July 2024 22

Backup

To deduce physics observations, such as the CP-violation by neutrinos (δ_{cp}), oscillation mixing angles, and the mass ordering of neutrino masses, we need to infer neutrino oscillation probabilities from the event rate

This can be done with a good understanding of:

- neutrino beam flux
- detector responses (selection efficiencies)

Prabhjot Singh

- neutrino-nucleus cross section modeling

18 July 2024

Why Neutrino Cross sections are Important? - Uncertainties

In the current era of neutrino experiments, we are no longer statistically-limited

Systematic uncertainties have become very important to derive physics conclusions from the data collected by the experiments

Uncertainties due to neutrino interaction modeling is one of the dominant source of uncertainties and can be reduced by the cross section measurements

Prabhjot Singh

ICHEP 2024

25

Why Neutrino Cross sections are Important? - Nuclear Physics

Neutrino cross section measurements can be used to study nuclear physics

In heavy nuclei, the interactions of nucleons within the nucleus affect the neutrino scattering by the nucleus

Physics conclusion can be drawn by comparing various nuclear physics models to the cross section measurement results

This can further help us to reduce neutrino interaction uncertainties in the future neutrino experiments

ICHEP 2024

18 July 2024

By Linda Cremonesi, Neutrino 2020

Prabhjot Singh

Final state interactions due to intra-nuclear re-scattering can change the hadron kinematics of the outgoing particles

Meson exchange currents (MEC) is a dominating model to describe 2p2h process

ICHEP 2024

Charge exchange Elastic scattering n/p Pion

production

 π^0

18 July 2024

Beam Exposure

Weekly neutrino beam 30 Weekly antineutrino beam Weekly exposure (10¹⁸ POT) 05 10 10 Neutrino POT: 26.8 e20 Antineutrino POT: 12.8 e20 2015 2014 2016 2017

• Total protons on target recorded so far 39.6e20 1MW, here we come! - Thanks to the hard work of many people, in front and behind New power record 950+ kW in FY23 the scenes

Prabhjot Singh

Current Analysis Dataset

Date

ICHEP 2024 18 July 2024 28

Event Display - Near Detector

Prabhjot Singh

Near Detector sees high intensity neutrino beam due to its close proximity to the neutrino target

We use this opportunity to do high statistics cross-section measurements

ICHEP 2024

Simulation Model - GENIE 3.0.6

Initial State Interactions	QE	MEC	Res/Coh	DIS	FSI
Local Fermi Gas (LFG)	Valencia + Z-expansion	Valencia	Berger- Sehgal (BS)	Bodek-Yang + Pythia	hN (many possible interactions)

- We simulate neutrino interactions using a custom model configuration of GENIE 3.0.6 tuned to external and NOvA ND data
- MEC and FSI are adjusted to produce a NOvA-specific neutrino interaction model tune
- NOvA-tuning is performed in variables that are different from this analysis

Prabhjot Singh

 MEC tune developed using neutrino data and applied to antineutrino

- Local Fermi Gas (LFG): spherical symmetric density of nucleons. Degenerate gas up to Fermi momentum
- Valencia model: includes random phase approximation
- Berger-Sehgal: lepton mass effects in single pion production by neutrinos
- Bodek-Yang: describes scattering at low momentum transfers by modeling deep inelastic cross sections in the few GeV regions
- hN (FSI): calculates cross section for many possible interactions inside nucleons

ICHEP 2024

Beam Flux

- Uncertainties from the hadron production
 - Hadron production model is constrained with external measurements on thin target data (NA49)
 - We use Package to Predict the Flux (PPFX) to evaluate Hadron production uncertainties (<u>Phys.</u> <u>Rev. D94, 092005</u>)
 - It results into a ~10% normalization effect
- Beam focusing (hardware related)
 - Includes uncertainties such as the horn current amperage, the beam spot size on target, the beam position on target, uncertainties related to the magnetic field used in the beam, and so on

Prabhjot Singh

- Sub-dominant

ICHEP 2024

18 July 2024 31

Hits associated in time and space are used to reconstruct tracks and showers

Prabhjot Singh

18 July 2024

Quality: 1+ tracks, >20 hits, >4 contiguous planes

Prabhjot Singh

18 July 2024

- Quality: 1+ tracks, >20 hits, >4 contiguous planes
- Interaction vertex in the fiducial volume

Prabhjot Singh

18 July 2024

- Quality: 1+ tracks, >20 hits, >4 contiguous planes
- Interaction vertex in the fiducial volume
- Fully contained tracks and showers are selected

Prabhjot Singh

ICHEP 2024

candidate muons

Prabhjot Singh

Boosted decision tree with muon dE/dx and scattering input variables is used to select

ICHEP 2024

18 July 2024

Selections

- candidate muons
- BDT provides excellent separation of signal from backgrounds

Prabhjot Singh

ICHEP 2024 18 July 2024 37

Selections

Prabhjot Singh

- Finally, we apply phase-space selections in T_{μ} and $\cos \theta_{\mu}$ to only report in bins with at least 200 signal events, giving at most 7% statistical uncertainty
- We select >900k events

ICHEP 2024

15000

10000

5000

15000

10000

5000

1.0

Selections

Prabhjot Singh

Majority of events are concentrated in the lowest E_{avail} region and at high forward angles

Purity

- Purity is shown only in the phase-space region
- It reduces with E_{avail} because the wrong sign component increase at higher E_{avail}
- Further reduction in purity in the 1-2 GeV E_{avail} is because of the presence of NC interactions at higher E_{avail}
- Overall it is a high purity sample with 90% purity

Prabhjot Singh

ICHEP 2024

40

Selection Efficiency

- Efficiency reduction with T_{μ} , and at higher scattering angles due to muons escaping containment
- Reduction at higher E_{avail} because there is more hadronic activity and showers in the detector making it harder for the muon to be properly reconstructed
- Overall, 32% selection efficiency

Prabhjot Singh

ICHEP 2024

41

Cross sections

- For differential cross section measurements in T_{μ} , $\cos \theta_{\mu}$, and E_{avail} , we need
 - Selected candidate signal events, sample purity \bullet
 - The unfolding matrix (reco to true migration): transitions events from reconstructed space to the true space. We use improved D'Agostini iterative unfolding method to unfold events
 - Selection efficiencies
 - Integrated beam flux, and number of target nucleons \bullet

Prabhjot Singh

Normalization by bin widths

$${}^{l}(\cos\theta_{\mu}, T_{\mu}, E_{avail})_{j}P(\cos\theta_{\mu}, T_{\mu}, E_{avail})_{j})$$

$$E_{avail}_{i}(\Delta\cos\theta_{\mu})_{i}(\Delta T_{\mu})_{i}(\Delta E_{avail})_{i}N_{target}\phi$$

Systematic Uncertainties

- Flux is dominating systematics, followed by detector response (biggest contributor detector calibration)
- Neutrino cross section and neutron uncertainties are also significant
- Shape-only shows that flux is mostly a normalization systematics while other uncertainties have a shape effect
- Overall average fractional uncertainty is within 14%

ICHEP 2024

Results of the Triple Differential Measurements

18 July 2024

Results of the Triple Differential Measurements

- Categories of results in different regions of available energies
 - ✓ Absolute data cross section comparisons to GENIE 3.0.6 untuned and tuned (NOvA MEC-tune) cross sections
 - ✓ Ratios of various GENIE configurations to the data cross sections
 - ✓ Ratios of GENIE, NEUT, NuWro, and GiBUU neutrino generators to data cross sections

GENIE Comprehensive Model Configurations (CMC)

GENIE versions	Configurations	Initial State Interactions	QE	MEC	RES/ Coh	DIS	FSI
3.0.6 (Our Base Model)	G18_10j_00_000	Local Fermi Gas (LFG)	Valencia + Z- expansion	Valencia	Berger- Sehgal (BS)	Bodek-Yang (BY) + Pythia	hN (many possib interactions
3.4.0	G18_10a_02_11a	LFG	Valencia	Valencia	BS	BY	hA (one effectiv interaction)
3.4.0	G18_10a_02_11b	LFG	Valencia	Valencia	BS	BY	hA
3.4.0	G21_11a_00_000	LFG	SuSAv2	SuSAv2	BS	BY	hA
3.4.0	AR23_20i_02_11b (DUNE)	Spectral function LFG	Valencia	SuSAv2	BS	BY	hA

Prabhjot Singh

ICHEP 2024

le)	
e	

Data Results: $100 < E_{avail} < 300$ MeV

• In 100-300 MeV E_{avail} , there is a significant mixture of QE, MEC, and **RES** interactions

 At high forward angles, GENIE predictions, both tuned and un-tuned start to over-estimate data

ICHEP 2024

18 July 2024

• Same conclusions, for QE, SuSA-v2 model is better than the Valencia mode

• For MEC, differences between the SuSA-v2 and Valencia are very small and they both perform poorly to model data

Prabhjot Singh

ICHEP 2024

18 July 2024

- Available energy region from 0.6-1.0 GeV is also dominated by the RES interactions and gives same conclusions
- GENIE tunes 02_11a, and 02_11b are performing better than 00_000 tune to model RES interactions

ICHEP 2024

18 July 2024

Neutrino Generators

Generators	Initial State Interactions	QE	MEC	RES/Coh	DIS	FSI
GENIE 3.4.0 (2023) (DUNE) AR23_20i_02_11b	Spectral function LFG	Valencia	SuSAv2	BS	BY	hA
NuWro 21.09.02 (2022)	LFG	Llewellyn- Smith (LS)	Valencia	NuWro RES model	BY	NuWro FS model
NEUT 5.7.0 (2023)	LFG	Valencia	Valencia	BS/RS	BY	Custom sem classical intranuclea cascade (INO model
GiBUU patch3 (2023)	Modified LFG	Dipole Form Factor, RPA corrections	Semi-inclusive electron scattering data	MAID (electromagnetic form factors)	Data driven GiBUU model	BUU transpo model

For generator comparisons, we only show the available energy regions which are enhanced either in QE/MEC or RES, or DIS interactions

Prabhjot Singh

ICHEP 2024 18 July 2024

Other exciting cross section analyses

- measurements at NOvA. Presented in W&C on 2 Feb 2024
- ν -on-e analysis: goal is to measure neutrino flux
- ν_{μ} CC low-hadronic energy triple differential
- ν_{μ} CC zero mesons
- $\bar{\nu}_{\mu}$ CC π^{0} analysis
- $\bar{\nu}_{\mu}$ CC on hydrogen
- $\bar{\nu}_{\rho}$ CC inclusive analysis
- Beyond single differential charge pion analyses

Prabhjot Singh

• Two 2p2h focused papers: Exploring 2p2h signatures in muon-neutrino charged-current

ICHEP 2024

Binning

 T_{μ} (GeV) = {0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.45, 1.60, 1.75, 1.90, 2.05, 2.20, 2.35, 2.50, 120

 E_{avail} (GeV) = {0.0, 0.10, 0.30, 0.60, 1.0, 2.0, 120.0}

 $Q^2 (\text{GeV}^2) = \{0.0, 0.10, 0.20, 0.30, 0.40, 0.60, 1.10, 2.8, 120\}$

Prabhjot Singh

- $\cos \theta_{\mu} = \{0.50, 0.74, 0.80, 0.85, 0.88, 0.91, 0.94, 0.96, 0.98, 0.99, 1.0\}$
- E_{ν} (GeV) = {0.0, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50, 3.0, 4.0, 120}

ICHEP 2024

NOVA-MEC Tuning

- Fit is performed to the Near Detector using dual 2D-Gaussians in energy and momentum transfer space
- CV shifted upward by 50%
- Systematics are applied to assess remaining differences

Prabhjot Singh

ICHEP 2024

18 July 2024

NOVA-MEC Tuning

NOvA Preliminary

Prabhjot Singh

NOvA Preliminary

MEC weights from neutrino sample also improves MEC fractions in the the anti-neutrino sample

ICHEP 2024

18 July 2024

MEC Tuning Uncertainty

Prabhjot Singh

We alter other cross-section parameters by 1σ in conjunction to make things more 'QE-like' and 'RES-like' to support our possible uncertainty.

ICHEP 2024

Signal and Backgrounds: $0 < E_{avail} < 100$ MeV

Prabhjot Singh

ICHEP 2024

56

Signal and Backgrounds: $100 < E_{avail} < 300$ MeV

Prabhjot Singh

ICHEP 2024

57

Signal and Backgrounds: $300 < E_{avail} < 600$ MeV

ICHEP 2024

Prabhjot Singh

Signal and Backgrounds: $0.6 < E_{avail} < 1.0$ GeV

Prabhjot Singh

ICHEP 2024

18 July 2024

Signal and Backgrounds: $1.0 < E_{avail} < 2.0$ GeV

ICHEP 2024

Prabhjot Singh

60

Interaction Modes: $0 < E_{avail} < 100$ MeV

Prabhjot Singh

ICHEP 2024

61

Interaction Modes: $100 < E_{avail} < 300$ MeV

 $0.50 < \cos \theta_{\mu} < 0.74$

Fractional Contribution to Signal 0.5 $0.88 < \cos \theta_{\mu} < 0.91$ $0.91 < \cos \theta_{\mu} < 0.94$ 0.5 $0.98 < \cos \theta_{\mu} < 0.99$ $0.99 < \cos \theta_{\mu} < 1.00$ 0.5 2 2 T_µ (GeV) T_{μ} (GeV)

Prabhjot Singh

ICHEP 2024

62

Interaction Modes: $300 < E_{avail} < 600$ MeV

ICHEP 2024

Prabhjot Singh

63

Interaction Modes: $0.6 < E_{avail} < 1.0$ GeV

Prabhjot Singh

ICHEP 2024

64

Interaction Modes: $1.0 < E_{avail} < 2.0$ GeV

 $0.50 < \cos \theta_{\mu} < 0.74$ Fractional Contribution to Signal 0.5 $0.85 < \cos \theta_{\mu} < 0.88$ 0.5 $0.94 < \cos \theta_{\mu} < 0.96$ 0.5 2 T_µ (GeV)

Prabhjot Singh

ICHEP 2024

65

Systematic Uncertainties: $0 < E_{avail} < 100$ MeV

Prabhjot Singh

ICHEP 2024

66

Systematic Uncertainties: $100 < E_{avail} < 300$ MeV

Prabhjot Singh

ICHEP 2024

67

Systematic Uncertainties: $300 < E_{avail} < 600$ MeV

Prabhjot Singh

ICHEP 2024

68

Systematic Uncertainties: $0.6 < E_{avail} < 1.0$ GeV

Prabhjot Singh

ICHEP 2024

69

Systematic Uncertainties: $1.0 < E_{avail} < 2.0$ GeV

Prabhjot Singh

70

18 July 2024

ICHEP 2024

Unfolding Matrix and Technique

- Unfolding is performed in 3D space of T_{μ} , $\cos \theta_{\mu}$, and E_{avail}
- Unfolding transitions events from reconstructed space to the true space
- We use D'Agostini iterative unfolding method to unfold events

Prabhjot Singh

NOvA Simuation

lipeia.	101-5458	1.0014	- 131 (197		1.45	1.1	8. NF	u Chine.	1.8	12 J ^P	8 °	1 500	1.500	3 89	AND	' <u></u>
		$-e^{i\phi}$		1.2	10			din.	-1	1.00	199 ¹⁰	⁹⁶ *	and the			325
1.1	1.15			$(1,1)^{1-1}$			2	14		1	ا ^{ینی} دو		-		Case .	्डल
e parte	20	1.00	10	120	100	1.15	1 ÷.*	2000	. ista	275 ²⁵¹)	1385	5 ¹⁴
$\mathbb{P}(p^{2})$	e gente	- 795	a Alexandra	1.24	1 and	287		1100	. and the	100 C					1993	
$\mathbb{R}^{d_{2}}$	ner)	(* 1924) 1945 - Salat	- 15	147	1.557		معنی			AN AND AND AND AND AND AND AND AND AND A				28		<u>:</u>
	1.16		1.00	2. 2	1427	de	in the second	and the second s	1999			14885	1.55	1	1.5	•
	140	$(1, e^{i \frac{2\pi}{2}})$	1983	San Star	1942) 19	مرتب می می اور مرتب می موجعه در ا	1.2.8.5.8.5.Y	-				$\mathcal{J}^{(n)}$	$\chi(r^{2})$			·
	and the second sec	4	and and	St.	Sugar .	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			- ant	1285	2.				\neg
	1. 1997 1997 - 1997 1997 - 1997		. Att		3.25.58 ·	CT-500-007-1				$e_{1} \approx 5^{2} e_{1}$	${\cal L}_{\rm eff} = 0$		11			
1.5	13AA	a ser	1	A STREET					- 1947 - 1947 - 1947	2			•			
indi).	- Josephere -) All	and the second second						180	1		$(e^{ik})^{-1}$. –
			HARA P				jane).	e di ka			1.141					
		and the second			Alter	all the second	$= \frac{e^{2t}}{e^{2t}}$.*	1.1					_
						n An Maria	$= 1 \sqrt{2}$	-								
						an a		1			1. J.					
	, iff					1.11										
ant -									-	. 1	-	1.1				
50 - 504	20	0	1.029E2562	40	0	< NRAE	60	0	. .	80	0	- 5	100	0		نـــــا
Reco T_{i} and Reco $cos(\theta_{i})$ and Reco E_{i}																

ICHEP 2024

Number of Unfolding Iteration

ICHEP 2024
Systematic Uncertainties

- multi Poisson universes
- and angle shifts, GEANT4 secondary interactions
- Flux: PPFX and beam systematics
- Neutrino-interaction model: NOvA "custom" systematics, with
 - updates to RPA CCQE with Valencia as base model
 - RES "RPA" replaced by smaller, better motivated low-Q^2 suppression knob
 - Retuned MEC systs based on previous NOvA data
 - Custom Formation Zone and FSI knobs using "BDT reweight" method

Prabhjot Singh

within **GEANT4**

• Statistical: includes statistical uncertainties from both the data and MC samples. Evaluated using

• Detector response: energy calibration, light levels, Cherenkov light, detector aging, muon energy

• Neutron systematics: based on neutron-carbon inelastic reactions defined by MENATE_r model

ICHEP 2024 18 July 2024 73

Covariance and Correlation Matrices

- Cross sections are calculated for nominal and each source of systematic uncertainty
- Covariance matrix is evaluated using the nominal and the shifted cross sections

- Correlation matrix shows that the large phase-space region is highly correlated between analysis bins
- Bin-by-bin correlations are picked up by the covariance matrix
- **ICHEP 2024** 18 July 2024 74

Muon ID: Data/MC

ICHEP 2024

Prabhjot Singh

75

Systematic Uncertainties

Prabhjot Singh

Sources	Avg. fract uncertain	
	Enu	
Detector Response	4.8	
Flux	11.8	
v-A model	3.2	
Neutron	1.0	
Statistical	0.3	
Total	13.4	

18 July 2024

76

Shape only Results

NOvA Preliminary

Prabhjot Singh

NOvA Preliminary

ICHEP 2024

18 July 2024

77

Shape only Results

NOvA Preliminary

Prabhjot Singh

NOvA Preliminary

ICHEP 2024

18 July 2024

78