

Looking forward to millicharged particles at the LHC

Jacob Steenis on behalf of the FORMOSA Collaboration

What is compelling about mCPs?

- Currently no satisfying explanation for charge quantization…
	- No monopole discovery…
	- …charge could be **percentages** of e
	- (Hence "milli"-charged particle)
- mCPs arise in **dark photon theories**
	- Small kinetic mixing with SM photon gives dark sector fermions a "milli"-charge
	- Creates mechanism for communicating with dark sector

A phase space need…

Potential sources of mCPs

- accelerators
	- Fixed-target collisions
	- **LHC collisions**
- **reactors**
- stars

Current LHC experiments lack subst sensitivity to mCPs.

- **mCPs sail through matter to small charge!**
- Limited to $Q > 0.1e$

Dedicated detectors are needed!

- Current: MilliQan (central
- Proposed: FORMOSA (forw

How can we detect millicharged particles?

Follow the example of **MilliQan**!

Design requirements

- PMTs must be sensitive to single photons
- Need a substantial scintillation volume

Expected signal is low-energy deposits in all four layers

• Requiring four layers hit within a small time-window makes uncorrelated backgrounds negligible

The FORMOSA Detector

~600m away from ATLAS

There's **~250x increase in production** rate in forward region relative to central region

• GeV-scale (and below) mCPs are produced evenly in pseudorapidity

FORMOSA is a proposed MilliQan-like detector **suitable for any location in the forward region**.

> Such as the proposed Forward Physics Facility (FPF)

Targeted Background -- Afterpulsing

Muons generated at ATLAS Afterpulsing in PMTs

The goal of the FORMOSA demonstrator is to demonstrate we can eliminate the afterpulsing background!

Partners in crime: muons and afterpu

Diagram and plot: Carlos

Partners in crime: muons and afterpu

The FORMOSA Demonstrator

The Anatomy

First look at data

We can select through-going activity (4 layers hit) in FORMOSA which aligns with ATLAS luminosity!

- Rate prescaled by \approx 1/500
- This offline plot roughly corresponds to expected muon rates

First look at data

We can select through-going activity (4 layers hit) in FORMOSA which aligns with ATLAS luminosity!

- Rate prescaled by \approx 1/500
- This offline plot roughly corresponds to expected muon rates

First look at data

If we remove offline cuts on the muon panels, it's clear that the un-prescaled rates can get very high

• **We need to study beam-related backgrounds**

Beam-related background

Beam-related background

7/17/24 Jacob Steenis 16

Beam-related background

would not be an issue in a Such radiation backgrounds dedicated facility!

FORMOSA sticks out past the concrete shielding.

Added side-panels in recent intervention to mitigate this radiation.

Can we see the gradient of activity?

Can we see the gradient of activity?

Yes, there is a clear gradient

Can we see the gradient of activity?

As of last week, we've understood these backgrounds sufficiently to **control the trigger rate** using savvy firmware!

Yes, there is a clear gradient

What's the potential sensitivity of such a detector?

7/17/24 **Sensitivity only depends on mass and charge of mCP** 21

What if we expanded the demonstrator?

7/18/24 **Sensitivity only depends on mass and charge of mCP** 22

A year in review…

Achieved:

- Fabrication of structure
- Completion of PMT mounting/scintillator wrapping
- Above-ground testing and commissioning
- Detector **assembled** underground
- DAQ and triggering in a stable state
- **Calibration data obtained** underground
- **Manageable rates for signal triggers!**

Work in progress:

- Study **afterpulsing rates** in detector
- Further **optimize triggering** scheme

Thank you for listening!

A special thanks to Jamie Boyd, Brian Petersen, Claire Antel, and the **FASER collaboration**. Our work with FORMOSA could not have succeeded without you all!

The work of FORMOSA is built on the hard work and success of the **MilliQan collaboration**.

This speaker is supported with funding from the **Department of Energy**.

Backup

Lagrangians/Gauge Transformation

$$
\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} - \frac{\kappa}{2} A'_{\mu\nu} A^{\mu\nu}
$$

\n
$$
\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} - \frac{\kappa}{2} A'_{\mu\nu} A^{\mu\nu} + i \bar{\psi} (\partial \theta + ie' A' + i M_{mCP}) \psi
$$

\n
$$
A' \rightarrow A' - \kappa A
$$

\n
$$
\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + i \bar{\psi} (\partial \theta + i \kappa e' A + ie' A' + i M_{mCP}) \psi
$$

Theoretical Motivation

- Propose another electromagnetism in the dark sector
	- Suppose it's governed by a $U(1)$ group, call it $U'(1)$
	- \cdot U(1) will have the standard charge (e)
	- **U'(1) will have some other fundamental charge (e')**
	- Fermions in this theory could have ±e, ± e', both, or neither
	- This gives a **coupling between our photon (A) and a new, dark photon (A')** via virtual pairs of fermions with both charges

• The Lagrangian:

$$
\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + i \bar{\psi} (\partial \!\!\!/ + i \kappa e' A + i e' A' + i M_{mCP}) \psi
$$
\nMillicharged coupling to the photon

\nMillicharged coupling to the dark photon

[Source: B. Holdom 1986]

The Sensitivity of MilliQan Detectors

Charge range: ~(0.001-0.1)e

Mass range: ~(0.1-100)GeV

Bar Detector sensitive to a larger charge range.

Slab Detector sensitive to a larger mass range.

By what processes can we detect the

- Standard electromagnetic interactions!
- Millicharged particles couple electromagnetically to the standard model photon
	- Charge of κe
	- κ should be in the range of $0.1 0.001$ otherwise current colliders would have found something (e.g. 0.5e)
	- https://cds.cern.ch/record/2841994/files/EXO-19-006 pas.pdf
- Thus, we can use standard charged-particle techniques!
- $\frac{dE}{dx} \sim Q^2$ for millicharged candidates with a mass greater than 100MeV
	- Ionization is the primary energy loss mechanism
	- Given by the Bethe-Bloch equation

[Source: A. Haas et al. 2015]

Quarks

7/17/24 Jacob Steenis 29

CeBr3 Scintillator Added

Channel 1, $V_{max} = 35$, $N_{pulses} = 5$ Channel 4, $V_{max} = 36$, $N_{pulses} = 2$ Channel 5, $V_{max} = 46$, $N_{pulses} = 16$ Channel 6, $V_{max} = 31$, $N_{pulses} = 1$ Channel 8, $V_{max} = 52$, $N_{pulses} = 9$ Channel 9, $V_{max} = 57$, $N_{pulses} = 5$ Channel 10, $V_{max} = 40$, $\dot{N}_{pulses} = 6$ Channel 11, $V_{max} = 65$, $N_{pulses} = 5$ Channel 14, $V_{max} = 31$, $N_{pulses} = 6$ Channel 20, $V_{max} = 32$, $N_{pulses} = 1$

Dark sector mixing

We can extend this sensitivity!

mCP Production Cross-Sections in the Forward Region

- A future detector in the forward region provides opportunity for substantial sensitivity extension
- GeV-scale (and below) mCPs are produced evenly in pseudorapid
	- ~250x increase in production rate relative to central region

An alternate design that includes CeBr3

Regions of the detector could be CeBr3

- 6x the light yield of plastic
- 5x the density
- Fast scintillation time constant
- Low intrinsic radioactivity
- More expensive...

Such a material could enhance lowcharge sensitivity