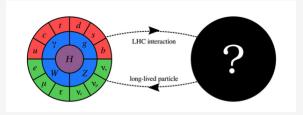
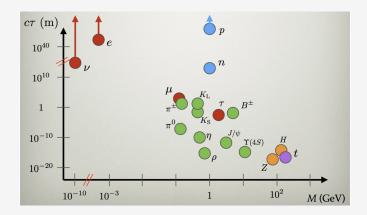


CODEX-b: The COmpact DEtector for eXotics at LHCb

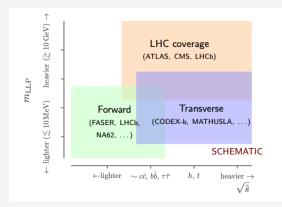

Emilio X. Rodríguez Fernández¹

¹Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain



On behalf the CODEX-b collaboration

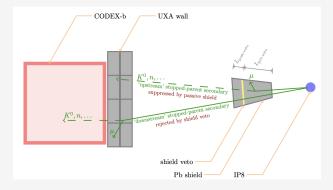
- Several reasons which could explain this issue could be:
 - NP is too heavy to be seen in nowadays' accelerators (HL-LHC).
 - $\circ~\text{NP}$ is very feebly interacting, need for new degrees of freedom inside the SM.
 - NP is hierarchical or have very small parameters: *hidden sectors* may feature exotic Long-Lived particle decays to usual SM particles.



- SM reference: Usual particles can be long-lived if an approximate symmetry makes them stable.
- The same principle can be aplied to BSM Physics!
- Several models predict BSM LLPs: Supersymmetry, Hidden Sectors, Higgs Portal...

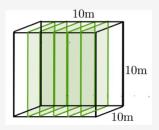
CODEX-b

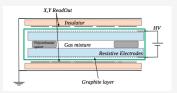
- Current detectors specialized in phenomena happening around the interaction vertex.
- Need for specific triggers, reconstruction algorithms and dedicated sim models.

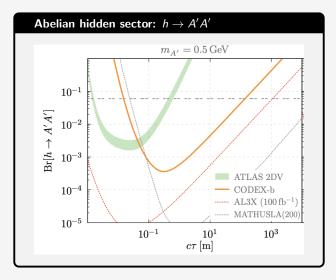


CODEX-b

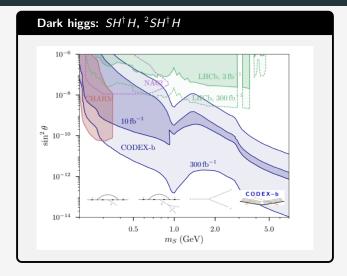
- New special-purpose LLP detector in LHCb cavern.
- $10 \times 10 \times 10$ m³ fiducial detector making use of existing technology and infrastructure.
- Located 25m away from IP8, with 0.13 $\leq \eta \leq$ 0.54.
- Zero background experiment: UXA shield + active vetoes $\rightarrow \sim 32\lambda/300 \textit{fb}^{-1}$.

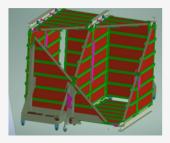

CODEX-b

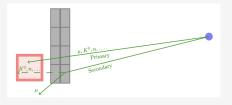



- Expected $\sim 10^{14}$ n and K⁰ in $300 fb^{-1}$.
- Also muons flying through the shielding.
- Recombinations in the material also dangerous.
- Shielding removes all of these backgrounds.
- Rates and effect of shielding verified in D1 barracks background campaign.

CODEX-b baseline design


- Cubic array of RPCs (inner trackers and instrumentalized faces) mounted on mechanical frames.
- ATLAS BIS-78 technology (3 independent detectors per chamber):
 - o 5mm of spatial resolution.
 - $\circ~$ 300ps of timing resolution.
- Ensures LLP traceability while vetoing rescattering of soft tracks.
- Specific hermetic coverage.

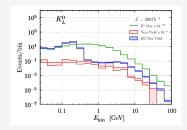

Physics case

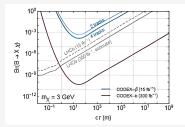


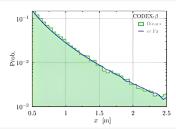
This and more in our expression of interest document: https://arxiv.org/pdf/1911.00481

Design a demonstrator: CODEX- β

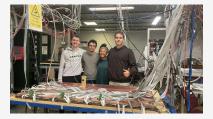
- Small-scale demonstrator in order to:
 - Validate background estimates for CODEX-b.
 - Demonstrate the inclusion within LHCb readout.
 - Demonstrate suitability of RPC tracking technology.
 - $\circ~$ Reconstruct known SM backgrounds.
 - Demonstrate suitability of the mechanical frames.






- Reduced fiducial volume: $2 \times 2 \times 2$ m³.
- Reduced number of tracking stations: 42 RPC singlets integrated into 14 modules.
- Inner station for proper tracking.
- TDR is newly accepted by JINST: https: //arxiv.org/abs/2406.12880!

Physics with CODEX- β


- Distribution of background components in D1 barracks.
- Trial New-Physics analysis.
- K_S^0 lifetime measurement.

Status of the CODEX- β demonstrator

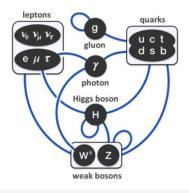
- Assembling and testing of the RPCs started at ATLAS workshop,but now continuing at the CMS! Many Thanks!
- Built and tested 29 of 42 singlets, and triplet characterization also started.
- ANUBIS supplied trigger electronics...thank you!

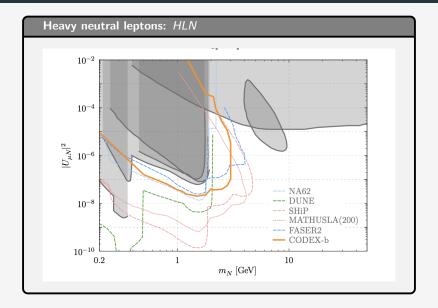
- Works at D1 barracks starting:
 - Providing a gas line (and system) for RPCs.
 - Transport from workshop to P8 (150 kg/frame).

- A fast simulation framework has been developed to study geometry optimizations and sensitivity.
- Advances in simulation and reconstruction frameworks.
- Finish RPC frames and testing: 2025 as milestone for data-taking with CODEX- β !
- Integration of detector with the LHCb readout system is work in progress

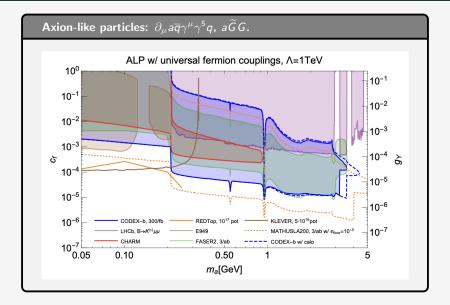
Conclusions

- CODEX is a young collaboration, but growing!
- Great human team: people from theory, LHCb, CMS, ATLAS...
- Overcome many challenges on the way, on track for data taking in 2025!


Back-Up


- The SM is the most successful theory describing nature at subatomic scales.
 - Accomodates strong, weak and electromagnetic interactions.

 $G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$


- $\circ~$ Very precise and predictive:
 - W and Z bosons
 - Top quark
 - Higgs
- But also an incomplete theory:
 - Dark Matter
 - Baryogenesis
 - Gravity

Back-Up

Back-Up

