Design and performance of the calorimeter system for the ALLEGRO FCC-ee detector concept

Erich W. Varnes University of Arizona for the ALLEGRO team

42nd International Conference on High Energy Physics Prague, Czech Republic July 20, 2024

ALLEGRO and the FCC-ee

• FCCee design allows for four interaction regions

- Ideally populated with complementary detectors
 - subject to different systematic effects
- Defining feature of ALLEGRO is noble-liquid EM calorimetry
- Noble liquid calorimetry has several features that match well with the demands of the FCCee program
- e.g. linearity and stability \rightarrow potential for small systematics
- Successfully used in several HEP experiments (SLD, MarkII, DØ, H1, NA48/62, ATLAS)

ALLEGRO and the FCC-ee

- Quarter view of ALLEGRO concept
 - to be understood as a platform for testing ideas; all details subject to change

Calorimeter Requirements

- Precision physics program at FCCee places stringent demands on calormeters:
 - Separation of $W/Z \rightarrow jj$ (e.g. in Higgs decay) + requires $\frac{\sigma}{E} \sim \frac{30\%}{\sqrt{E}}$ for jets
 - Achieved through a combination of hadronic calorimetry and "particle flow" reconstruction

250 GeV jet (CLIC_ILD)

Calorimeter Requirements

- EM calorimeter requirements are driven by Higgs and flavor physics programs
 - Higgs:
 - recover brem γs from recoil to improve mass resolution
 - Flavor:
 - + distinguish $e/\text{single }\gamma/\pi^0 \to \gamma\gamma$
 - + separate B^0 and B_S decays to same final state

Calorimeter Design (EM barrel)

- Resolution requirements demand frequent shower sampling
 - many thin absorbers
 - uniformity in φ, possibility to read out from high-r side, use of many copies of a few components lead to an "inclined planes" design

1536 1.8-mm thick absorber plates, inclined at 50° wrt r̂
Readout electrodes and LAr (or LKr) gaps between plates

Electrodes are multi-layer PCBs with internal signal routing

Granularity in the dimensions along the absorber is determined by segmentation of readout electrode

Calorimeter Design (EM barrel)

Calorimeter Design (EM endcap)

- One concept is for a ~direct translation of the EM barrel design to the endcap
 - the inclined planes become "blades" in a turbine-like structure:

Tapering the absorbers to be thicker with increasing *r* may be necessary

Calorimeter Design (HCal Barrel)

- To keep the detector compact, an iron/scintillator design is used for the HCAL
 - current implementation simulation is similar to the ATLAS TileCal
- Granularity in r/φ determined by size of scintillating tiles
 - 3-4 tiles ganged in θ
 - detailed PFlow studies planned to determine optimal granularity

CALICE-like detector also under consideration

Simulation

- Detailed (Geant4-based) simulation is required to evaluate and optimize detector designs
- For ALLEGRO, this is done with the <u>key4hep</u> SW ecosystem
 - used by many future collider experiments
- Geometry defined with <u>DD4hep</u>
- C++ code defines structure, with parameters taken from xml files
 - simple to make modifications, swap in/out detector systems, etc.

Simulation Results (ECal Barrel)

Performance is consistent with requirements

E.W. Varnes

Simulation Results (ECal Endcap)

• Initial single-electron studies, with sliding-window reconstruction

Simulation Results (HCal Barrel)

• Single pion studies

Linearity of response

Combined ECal + HCal Response

- Reconstruction can combine signals from ECal and HCal barrels
- Example shown is a single 50-GeV pion
 - topological clustering used for reconstruction

Combined ECal + HCal Response

• Effect of different reconstruction algorithms and calibration methods (single pions used in all cases):

Summary

- The ALLEGRO concept serves as a testbed for potential FCC-ee detectors (calorimeters in particular)
 - defining features are noble-liquid EM and iron/scintillator hadronic calorimeters
- Simulation studies show that this calorimeter system could meet the demands of the FCC-ee program
 - lots of exciting work ahead in optimization and in converting the concept to an actual detector
 - see <u>Zhibo Wu's talk</u> on R&D studies for noble-liquid calorimeters

Plenty of room for new ideas (and new collaborators!)

Backup