

Status of the JUNO detector

Zhonghua Qin (IHEP, China) qinzh@ihep.ac.cn On behalf of the JUNO collaboration ICHEP 2024, Prague

JUNO experiment

- Jiangmen Underground Neutrino Observatory (JUNO) is located in Jiangmen city, Guangdong province of South China:
- ~ 53 km from the Yangjiang and Taishan Nuclear Power Plants (total power: 26.6 GW)
- ~700 m underground (1800 m.w.e)
- a successor of the Daya Bay neutrino experiment (DYB)
- approved in 2013, construction started in 2015

Physics motivations of JUNO

Neutrino Mass Ordering (NMO)measurement

- -Normal mass ordering: $m_1 < m_2 < m_3$
- -Inverted mass ordering: $m_3 < m_1 < m_2$
- -JUNO will determine NMO with 3σ significance in 6 years

Precision measurement of oscillation parameters

- for $\sin^2 2\theta_{12}$, Δm^2_{21} , $|\Delta m^2_{32}|$, world-leading precision in 100 days, and precision <0.5% in 6 years
- Many other physics programs
 - Solar neutrinos
 - Geo-neutrinos
 - Supernova burst neutrinos
 - Supernova relic neutrinos
 - Exotic neutrinos
 - Nucleon decay

A 16 A

JUNO collaboration

Collaboration established in 2014

now more than 700 collaborators from 74 institutions in 17 countries/regions

Country	Institute	Country	Institute	Country	Institute	
Armenia	Yerevan Physics Institute	China	Tsinghua U.	Germany	U. Tuebingen	
Belgium	Universite libre de Bruxelles	China	UCAS	Italy	INFN Catania	
Brazil	PUC	China	USTC	Italy	INFN di Frascati	
Brazil	UEL	China	U. of South China	Italy	INFN-Ferrara	
Chile	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano	
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca	
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova	
China	Beijing Normal U.	China 📜	Xiamen University	Italy	INFN-Perugia	
China	CAGS	China 🥠	Zhengzhou U.	Italy	INFN-Roma 3	
China	ChongQing University	China 🧾	NUDT	Pakistan	PINSTECH (PAEC)	
China	CIAE	China	CUG-Beijing	Russia	INR Moscow	
China	DGUT	China	ECUT-Nanchang City	Russia	JINR	
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU	
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU	
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.	
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.	
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.	
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT	
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU	
China	NCEPU	France	Subatech Nantes	Thailand	SUT	
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Liverpool	
China	Shandong U.	Germany	TUM	U.K.	U. Warwick	
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G	
China	IGG-Beijing	Germany	GSI	USA	UC Irvine	
China	SYSU	Germany	U. Mainz			

the 24th JUNO collaboration meeting + physics analysis workshop, June 29- July 5, 2024 ~240 participants

- Main requirement: Target mass of 20 kton liquid scintillator, Energy resolution 3%@ 1MeV
- Unprecedented liquid scintillator neutrino experiment

	Daya Bay	BOREXINO	SNO+	KamLAND	JUNO
Target Mass	8* 20 ton	300 ton	780 ton	1 kton	20 kton
Number of PMTs	8 *192 8-in.	2212 8-in.	~10000 8-in.	1325 20-in. + 554 17-in.	20012 20-in.+ 25600 3-in.
Photoelectron Yield (p.e./MeV)	160	450	520	250	>1300
Photocathode Coverage	12%	30%	50%	34%	78%
Energy Resolution@1MeV	7.5%	5%	6%	6%	3%
Energy calibration	<1%	1%	≤ 1%	2%	≤ 1%

Daya Bay (20x8t)

Borexino(300t)

SNO+ (780t)

JUNO (20 kt)

JUNO detector design

- Acrylic Sphere: containing 20 kton LS Inner Diameter (ID): 35.4 m Thickness:12 cm
- Stainless Steel (SS) Structure: supporting acrylic sphere and PMTs
 - ID: 40.1 m, Outer Diameter (OD): 41.1 m
 - 17612 20-inch PMTs, 25600 3-inch PMTs
- Water pool: 35 kton water + 2400 20" PMTs ID: 43.5 m, Height: 44 m, Depth: 43.5 m

Tunnel digging& Cavern excavation finished

Getting to 700 m underground was really difficult, 7 years spent:

- Tunnel digging started in 2015, finished in 2017
 - -1265 m slope tunnel
 - 563 m vertical shaft

-1300 m others tunnels for transportation and connection

Slope tunnel and vertical shaft digging

- Experimental cavern excavation finished in 2020, water pool finished in 2021
 - 49 m * 55 m * 71 m (incl. water pool)
- Much more underground water than expected
 - max. 600 tons/h, pumping out to surface

Cavern and water pool excavating

Underground halls/rooms excavated

 Water still under pumping out: ~400 ton/h

JUNO

Central detector design

φ 35.4 m acrylic sphere supported by $\,\varphi$ 41.1 m SS structure

- Acrylic sphere
 - made by 263 acrylic panels: ~3 m \times 8 m \times 12 cm,

23 layers

- total weight ~600 tons
- good transparency(>96% in water), and low background (< 1 ppt for U/Th)
 - low mechanical stress(< 3.5 MPa) after LS filled
- Stainless-steel structure (SS structure)
- latticed shell made by latitude and longitude beams
 - 30 supporting legs fixed on the water pool base
- 800 tons low-radioactivity stainless-steel (type 304, radio-impurity <1ppb)
- Special nodes designed for connecting acrylic sphere to SS structure

-in total 590 nodes

arXiv: 2311.17314 (2023)

Construction of SS structure finished

- Installation sequence: supporting legs firstly (step 1-5), then downwards (step 6-7), finally upwards (step 8-4)
- Beams connected by bolts instead of welding
 - 120000 sets of high friction bolts, final friction coefficient up to
- 0.5 by SS surface coarsening
- high strength bolts, with special riveting device for fast installing, preventing loosen, reliable, avoiding seizing on nut
- Spent only 5 months for construction, small deviation in radius after survey
 - design: 20550 mm; survey: 20530 mm; deviation: <20mm (1‰)

Installation sequence

Bolts and riveting

Construction of acrylic sphere ongoing

- Build the sphere layer by layer from top to bottom, currently 18/23 finished, 2 years spent (Jul. 2022 – now)
 - a lifting platform used, height and diameter changeable
- Panels bonded by the bulk-polymerization technique (MMA->PMMA)
 - circle lines and vertical lines bonded simultaneously
- Many problems solved during construction: explosive polymerization, defects repairing, stress measurement, etc.

Polymerization

Supporting bar installation

Bonding line sanding

Cleaning

Filming

Inside view of the sphere (upper semi-sphere)

Outside view of the sphere (lower semi-sphere)

JUNO 20-inch PMT

 In total 20012 2 15,012 MCP-PM PMT(Hamamatsu) an optical covera All PMTs delive HV, SPE, PDE, 	0" PM IT (NN) age of 7 ered an DCR,	T for JUNC /T) + 5,000 75% d performa TTS, P/V): Dynode Ince test	e sted	Incident photon
Parameters		LPMT (20-ind	ch)	MCP Focused	
		Hamamatsu (Dynode)	NNVT (MCP)		Hamamateu
High Voltage (V) at 10 ⁷ of Gain		1863	1748	$(15.012) \qquad (5000)$	Tamamatsu
SPE amplitude (mV)		6.5	7.5	(15,012) (5000)	
Photon Detection Efficiency		28.5%	30.1%	1000 ALL:Mean=29.6%, STD=2.6% 1 4 7 10 NNVT:Mean=30.1%, STD=2.8%	13 16 19 2
	Bare	15.3	49.3	800 - HPK:Mean=28.5%, STD=1.7% 34 → NNVT B HPK:Mean=28.5%, STD=1.7% 34 → NNVT Hamamatsu	NVT amamatsu
Dark Count Rate [kHz]	Potted	17.0	31.2		
Transit Time Spread (o) [ns]		1.3	7.0		
P/V		3.8	3.9		
Rise time (ns)		6.9	4.9		31 36 41 46 51
For more information		Eur.Phys.J.C 12, 1168	82 (2022)	PDE Corrected [%] Batch Nur Photon detection efficiency (PDE)	nber

Glass Photocathode

-Dynode

22

PMT waterproof potting and protection finished 14

Water proof potting

- Required failure rate <0.5%/6 years
- Technology invented for both MCP and dynode PMT, patented
 - all 20012 PMTs being potted in 2 years

- leakage test found no failure (SF $_6$ tested for every PMT, 1% sampling test in pressurized water tank)

A potted PMT

PMT potting station

Leakage test after potting

Implosion protection

- avoid the accident happened like in Super-K
- protection method developed

Acrylic cover at top + Stainless-steel cover at bottom

- validation test in water tank: no chain reaction

- all covers produced, assembly ongoing

PMT protection design

Implosion test

20" PMT readout electronics

• JUNO requirement:

- Dynamic range: 1-4000 PE
- Noise: < 10% @ 1 PE
- Resolution: 10%@1PE, 1%@>100 PE
- Failure rate: < 0.5%/6 years

Solution:

- 1 GHz FADC (14 bit) + GCU in an waterproofed box for PMT waveform measurement

- cables in the corrugated pipe (bellow)
- Back-end card and low power supply in electronics room
- All electronics produced and tested

Under-water(waterproofed) box and the scheme

NIM A 1052 (2023) 168255

Cable routing on truss (~70 m long)

Electronics room

3" PMT system

25600 3" PMT (XP72B22 from HZC photonics)

- **Goal:** 3% more light, higher dynamic range for muons, calibration for 20" PMTs' non-linearity.
- Mass production, potting and performance test of all 3" PMTs completed

• Readout electronics:

-200 underwater boxes, each for 128 PMTs read by ASIC Battery Cards (ABC), each with 8 CatiROC chips, only charge readout

Installation of PMTs/Electronics ongoing

Total number installed now:

CD 20" PMT(LPMT)

- layer# +11 to -3 finished
- 12565 PMTs (71% of 17612)

CD 3" PMT(sPMT)

- layer# +11 to -1 finished
- 15740/25600 PMTs (61%)

20" PMT electronics

- layer# +11 to + 1 finished
- 3228 UWBs (48% of 6681)

□ VETO module

- layer# +11 ~+2 finished
- 850 PMTs (35% of 2400)
- VETO EMF shielding coils
 - layer# +11~+4 finished
- **Tyvek film reflector:**
 - layer# +11 to +5 finished

Installation of CD LPMT

Installation of LPMT electronics

Installation of sPMT and electronics

Inner view of PMTs

PMTs/Electronics commissioning during installation¹⁹

350

300

Std Dev

Gain [pC/PE]

0.6

04

Preliminary

2.2

• Regular commissioning/joint test of PMTs, Elec., DAQ/DCS, during installation:

- light-on test: Elec. /trigger/DAQ/DCS joint test w/o PMTs

- Light-off test: PMT dark rate data taking and full chain test

 PMTs are working well, all tested PMTs (~7000 20" + 11000 3") powered to operating voltage; electronics shows very low noise (<5% of SPE), and good shielding and grounding;

Light-off test

1128 channels tested in Bun 3

Average 2.8 ADC

3.2

(Amplitude of SPE ~ 70 ADC

Electronic Noise Level [LPMT]

2.8

45

Q_{BMS} [ADC]

20

Electronics noise for both 20" and 3" PMTs: only 2.7-2.8 ADCs, corresponding to ~4-5% of SPE

#Channel

20" PMT average DCR: **67 KHz** (not sufficient cooling-down time) 3" PMTs: gain consistent with nominal value 3 x 10⁶

Liquid Scintillator

See also poster ID#859

♦ JUNO recipe: LAB + 2.5 g/L PPO + 3 mg/L bis-MSB

- ⇒ High light yield: 12000 photons/MeV @420 nm
- \Rightarrow High attenuation length: LAB > 24m, LS > 20 m
- ⇒ Low radioactivity: U/Th for NMO< 1e-15 g/g, for solar and future $0\nu\beta\beta$ <1e-17 g/g

- All 60 ton PPO delivered, U/Th < 0.1 ppt
- Bis-MSB complete production soon (< 5 ppt)
- ◆ 20 kton LAB to be delivered, U/Th ~ 1 ppq
- All purification plants built and commissioned

Liquid Scintillator

♦ JUNO recipe: LAB + 2.5 g/L PPO + 3 mg/L bis-MSB

- ⇒ Light yield: 12000 photons/MeV @420 nm
- \Rightarrow Attenuation length: LAB > 24m, LS > 20 m
- ⇒ Minimum U/Th requirement (for NMO) < 1e-15 g/g, aiming at 1e-17 g/g for solar and future $0\nu\beta\beta$
- ♦ All 60 ton PPO delivered, U/Th < 0.1 ppt</p>
- Bis-MSB complete production soon (< 5 ppt)
- ◆ 20 kton LAB to be delivered, U/Th ~ 1 ppq
- Plants commissioned individually and jointly

Detector final cleaning plan and LS filling

Detector radiopurity control

- Radiopurity control of detector materials:
 - ✓ Careful material screening
 - ✓ Meticulous Monte Carlo Simulation
 - ✓ Accurate detector production handling Better than spec. by 15% Good enough for reactor neutrinos

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3	JHEP 11 (2021) 102

- Environmental control during detector installation:
 - Radon concentration: 180 Bq/m³ in EH, 140 Bq/m³ in LS hall, sensitive to the fresh air from vertical shaft
 - Cleanliness: class 89,000 (66,000 w/o large scale sanding of acrylic vessel)

VETO Detector

- **♦** 700 m overburden → Muon rate R_{μ} = 4 Hz in LS,
 < E_{μ} >= 207 GeV
- Induced background event (^aLi/^aHe) : 127/day (IBD signal: 47/day)
 - Need to reduce the background
 - Fast neutrons background: 0.1/day
 - ⁹Li/⁸He: 0.8/day

Water Cherenkov detector

- \Rightarrow 35 kton water to shield backgrounds from the rock
- ⇒ Instrumented w/ 2400 20-inch PMTs
- ⇒ Water pool lining: 5 mm HDPE (black) to keep the clean water and to stop Rn from the rock
- \Rightarrow 100 ton/h high-purity water system installed
- Top tracker (to be installed) See also poster ID#733
 - ⇒ Refurbished OPERA plastic scintillators
 - \Rightarrow 3 layers, 63 walls of 6.7 m * 6.7 m,
 - \Rightarrow ~60% coverage on the top
 - \Rightarrow angular resolution: $\Delta \theta \sim 0.2^{\circ}$ (median value)
 - \Rightarrow spatial resolution at the bottom: $\Delta D \sim 20$ cm

Muon event tagging efficiency > 99.5%

100 ton/h water purification system

NIMA 1057 (2023) 168680

Calibration and Expected Energy Resolution

- Four systems for 1D, 2D, 3D scan with multiple sources all systems ready to installation
- Calibrate energy scale uncertainty to < 1% using γ peaks and cosmogenic ¹²B beta spectrum

See also talk ID#963

True gamma energy [MeV]

25

Expected energy resolution: 2.95% @1MeV

JUNO-TAO(Taishan Antineutrino Observatory)

⇒ better resolution to reduce fine structure effects and spectrum uncertainties, also improve nuclear database

Detector features

- \Rightarrow 10 m² SiPM + 2.8 ton Gd-loaded LS @-50°C
- \Rightarrow 2000 IBDs/day@44m from the core (4.6 GW), ~10% bkg
- \Rightarrow Energy resolution: <2%/ \sqrt{E} , 4500 p.e./MeV
- $\Rightarrow SiPM (>94\% coverage) w/PDE > 50\%, operating at -50°C, dark rate$ $100k \rightarrow 100 Hz/mm²$

♦ Detector status

- ⇒ Production of major mechanical structures finished
- \Rightarrow All 4100 SiPM tiles delivered and under testing
- \Rightarrow 1:1 TAO prototype assembled and tested at IHEP
- \Rightarrow Will start installation at Taishan in a few months, data taking in 2025.

SS Tank & acrylic vessel & Copper shell

SiPM under testing

1:1 prototype

JUNO Site

Surface buildings / campus

- Surface Assembly Building
- LAB storage (5 kton)
- Water purification / Nitrogen
- Computing
- Power station
- Cable train
- Office / Dorm

~240 people working onsite now

Vertical Shaft, 563 m put into use in 2023

Slope tunnel, 1265m

~ 650 m $R_{\mu} \sim 0.004 \text{ Hz/m}^2$ $< E_{\mu} > \sim 207 \text{ GeV}$

Summary

JUNO construction is near completion, overcoming a lot of challenges
Detector will be finished in the end of 2024, then start filling, and data taking in 2025

Thank you for your attention!