

Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider

- C. Cantone, S. Ceravolo, V. Ciccarella, E. Di Meco, E. Diociaiuti, P. Gianotti, M. Moulson, D. Paesani, I. Sarra, M. Soldani LNF INFN F. Colao – ENEA Frascati
- E. Leonardi, **R. Gargiulo** INFN Sezione di Roma1
- A. Cemmi, I. Di Sarcina, J. Scifo, A. Verna ENEA Casaccia
- C. Giraldin, D. Lucchesi, L. Sestini, D. Zuliani INFN Sezione di Padova
- A. Saputi INFN Sezione di Ferrara
- N. Pastrone INFN Sezione di Torino
- G. Pezzullo Yale University
- D. Tagnani INFN Sezione di Roma Tre

42nd International Conference on High Energy Physics – Prague, Czech Republic, July 18, 2024

Crilin and the Muon Collider

Crilin (CRYstal calorimeter with Longitudinal INformation):

- ECAL R&D for the future Muon Collider: an option for a next-gen facility (see US P5)
	- Physics and detector studies for 3 and 10 TeV Muon Collider designs are ongoing

Muon Collider pros:

- **m>>me** (no synchrotron radiation)
- **point-like particle:** all energy is available in collisions
- **Higgs** boson studies
- **direct search of heavy states**

Muon Collider cons:

- τ_0 = 2.2 μ s : very fast cooling and fastramping magnets needed
- μ decay + interaction with machine: **beam-induced background (BIB)**, partially shielded by tungsten nozzles

 \rightarrow detectors must be able to cope with the **BIB** and to have good physics performances

BIB in the ECAL region (after nozzles and tracking system):

- Flux of 300 particles per $cm²$ through the ECAL surface:
	- mainly γ (96%) and n (4%): average photon energy 1.7 MeV
- **Time of arrival flatter** than physics signals \rightarrow most of BIB excluded with a clustering window of \sim 240 ps
- Different **longitudinal hit profile** wrt signal

See M.Casarsa's t

- **Total Ionising Dose**: ~1 kGy/year
- Neutron fluence: 10¹⁴ n_{1MeVeq}/cm² / year

July 18 2024 Crilin: a semi-homogeneous crystal calorimeter for the future Mu

The Crilin calorimeter

- **Semi-homogeneous** ECAL made of **crystal matrices** interspaced an
- Each crystal independently read by 2 channels, each [consisting](https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09033) of 2 S

Key factors for BIB handling: Crystal choice motivation:

Excellent timing: (<100 ps) to reject the BIB out-of-time hits and for pileup rejection

Longitudinal segmentation: allows to recognize fake showers from the BIB

Fine granularity: reduced hit density in a single cell to distinguish BIB hits from the signal

Good resistance to radiation: reliability during the experiment to resist BIB TID and neutrons

High-density: allows to build a compact system to fulfil space constraints

Fast response: Cherenkov/fast crystals, have excellent timing and fast rise times

PbF₂ (Cherenkov only) **PbWO4-UltraFast LYSO (to be tested)**

S. Ceravolo et al 2022 JINST 17 P09033

July 18 2024 Crilin: a semi-homogeneous crystal calorimeter for the future Mu

Simulated performances Minternational
UON Collider
Collaboration

- ECAL barrel with Crilin technology implemented in the Muon Collider simulation framework
	- Ø Including **digitization** from real test-beam waveforms + BIB rejection with timing and longitudinal hit position
	- ≥ 5 layers with 45 mm length, 10 X 10 mm² cell area \rightarrow 21.5 X₀

 \triangleright **In each cell:** 40 mm PbF₂ + 3 mm SiPM + 1 mm electronics + 1 mm air

- Design optimized for BIB mitigation: with 4.5 cm layers, BIB energy is integrated in large volumes \rightarrow reduced statistical fluctuations of the BIB energy deposit
- Crilin 5 layers competitive wrt W-Si 40 layers \rightarrow factor 10 less in cost (6 vs 64 Mchannels)

Prototype versions

- [Proto-0 \(2 crystals](https://ieeexplore.ieee.org/document/10431739) \rightarrow 4 channels)
- Proto-1 (3x3 crystals x 2 layers \rightarrow 36 channels)

Front-end electronics

- Design completed
- Production and QC completed

Beam test campaigns

- Proto-0 at CERN H2 (August 2022)
	- *C. Cantone et al. 2023 Front. Phys. 11:1223183*
- Proto-1 at LNF-BTF (July 2023-April 2024)
	- *C. Cantone et al. 2024 doi:10.1109/TNS.2024.3364771*
- Proto-1 at CERN (August 2023)

• **Radiation hardness campaigns**

• Both with Neutrons and Gamma rays

Crystals radiation hardness UON Collider Collaboration

⁶⁰Co Gamma rays

Ö

 \bullet

C

Tests of two **PbF**₂ and **PbWO₄-UF** crystals (both 10x10x40 mm3), for:

- TID (Co-60) @ Calliope, Enea
- Neutrons (14 MeV) @ FNG, Enea
- **For PbF₂ no significant decrease** in transmittance after**:**
	- Ø **TID < 360 kGy**
	- $\geq 10^{13}$ n/cm² neutrons

• **For PbWO4-UF no significant decrease** in transmittance after**:** Ø **TID** < **2 MGy**

≨…⊑

0.04 F

0.03

0.02⊩

0.01月

32

Neutrons irradiation tests: 14

MeV neutrons with a total fluence of 10^{14} n/cm² for 80 hours on a series of two SiPMs (10 and 15 μ m pixel-size)

From I-V curves extrapolation at 3 different temperatures:

- Currents at different operational voltages
- Breakdown voltages

For the expected radiation level, **the best SiPMs choice are the 10** μ **m ones** for their minor dark current contribution.

15 m pixel-size

10 m pixel-size

Dark I ω V_{op} 1.8 vs 13 mA for 10/15 micron pixels

Mechanics:

- Two stackable and interchangeable submodules, each composed of 3x3 crystals+36 SiPMs (2 channel per crystal)
- Light-tight case embedding front-end electronic boards and heat exchanger cooling SiPMs

Electronics:

- **SiPMs board:** custom SiPM array board 36x10 µm Hamamatsu SMD SiPMs
- **Mezzanine board:** 18x readout channels \rightarrow amplification, shaping and individual bias regulation, slow control routines

July 18 2024 Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider - R. Gargiulo 8/16

H2-SPS-CERN, August 2023

- Electron beam from 40 GeV up to 150 GeV
- Beam reconstructed with 2 silicon strip telescopes
- Data acquisition with 2 CAEN V1742 (32 ch each) modified @ 2 Vpp
- 5 Gs/s sampling rate

Beam test @ CERN: Configuration International
JUON Collider Collaboration

- **Two different SIPMs connection in the two layers for testing purposes:** series and parallel
- Timing resolution dominated by synchronisation jitter
- Energy resolution dominated by longitudinal leakage $(8 X_0 \text{ only})$

Synchronisation pulses reconstruction:

- **O(10 ps) ch-to-ch in the same chip**
- **O(30 ps) board-to-board jitter**

Beam test @ CERN: Energy Minternational
UON Collider
Collaboration

Good agreement between data e MC

- Time Resolution of **O(20 ps)** both in the series and in the parallel layers using the SiPMs time difference of the central crystals
- Excellent results using central crystals of different layers. **Time resolution dominated by the 2 boards synchronisation jitter** O(32ps)

July 18 2024 Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider - R. Gargiulo 12/16

BTF, April 2024

- Study of the LY loss of one layer of Proto-1 after Gamma ray irradiation
- Beam: 450 MeV electrons with multiplicity 1
- Beam centered on a different crystal at each run

1200 1800

Monte Carlo

x

100 GeV

108−6−4−2 0 2 % fm^ml −10 −8 −6 −4 −202468 10**Y[mm]** 200 [−]¹⁰ [−]⁸ [−]⁶ [−]⁴ [−]² ⁰ ² ⁴ ⁶ ⁸ ¹⁰ [−]¹⁰

- Crystals tested with two different wrapping, Teflon and Mylar, up to 80 kGy, with same SiPMs
- LY loss evaluated through variation in number of photo-electrons

Beam test @ BTF: considerations

- Considerable variability in crystals' response to radiation, despite SICCAS claiming use of high-purity ($>99.9\%$) PbF₂ powder for crystal growth
- Transparency loss was uniform length-wise in the crystals
- Teflon was damaged and brittle
- SiPM dark counts increases significantly with the absorbed dose
- Good operation after extreme TID (16 times MuCol) at low energies :)
- New tests planned to evaluate SiPMs PDE loss and optical grease degradation to disentangle LY losses due to crystals / SiPM

No dose 80 kGy dose

July 18 2024 Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider - R. Gargiulo 15/16

- **Time resolution**: $<$ 40 ps for single crystals, for $E_{\text{dep}} > 1$ GeV
- **Radiation resistance:** $PbF_2(PbWO_4-UF)$ robust to $> 350(2000)$ kGy and SiPMs validated up to 10¹⁴ n_{1MA} / $/cm²$ fluences – good operation after irradiation shown at low-energies
	- *Crilin fulfills requirements -> baseline choice for MuCol, but we can improve:*
	- *Use LYSO or PbWO-UF in the first calorimeter layer*
	- *Conduct new irradiation tests and monitor variations with a blue laser*

Next steps (2024 - 2025)

- **hard calorimeter proposal for a future Muon Collider by the strategy of the** \triangleright We submitted and won a PRIN grant for the project CALORHINO: *an innovative radiation-Experiment*.
	- \rightarrow founds assigned to develop a 5x5 x4(layers) Crilin prototype: 1 $M_B - 16.8 X_0$

DRD6-WP3 from 2025 – proposal submitted

 \triangleright Expanding upon the PRIN prototype to a 9x9x5(layers) configuration, with a target of 2 M_B – 22 X_0

Backup slides

July 18 2024 Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider - R. Gargiulo 17/16

Beam Induced Background

- **The beam-induced background (BIB)** poses the main challenge for the detector development at the Muon Collider
- Produced by muons decay in the beams, and subsequent interactions with the machine
- The BIB produces a flux of 300 particles per $cm²$ through the ECAL surface
- 96% photons and 4% neutrons, average photon energy 1.7 MeV

Key features:

- **Timing**: BIB hits are out-of-time, a resolution in the order of 100 ps is needed
- **Longitudinal segmentation**: different profile for signal and BIB
- **Granularity**: helps in separating BIB particles from signal, avoiding overlaps in the same cell
- **Energy resolution:** target $\frac{\Delta E}{\Delta E}$ E ≃ 10% \sqrt{E} [GeV]

May 22 2024 Design, Testing, and Radiation Resistance of the Crilin Calorimeter Prototype - I. Sarra 18/20

Main issues: BIB and radiation damage Optimized detector interface:

- Based on CLIC detector, with modification for BIB suppression.
	- Dedicated shielding (nozzle) to protect magnets/detector near interaction region.

FLUKA simulation for the BIB at \sqrt{s} =1.5 TeV

\cdot **Neutron fluence** \sim 10¹⁴ n_{1MeVeq} /*cm*²year on ECAL. • **TID** ~ **1 kGy/year** on ECAL.

Positional effects: waveshapesMinternational
UON Collider
Collaboration

Effects on waveforms (data)

- Pulse shape modification as a function of impact position selected with different fiducial cuts
- Green \rightarrow particle incident directly on SiPM pair giving signal
- Magenta \rightarrow particle incident on opposite SiPM pair
- Purple \rightarrow particle incident between SiPM pairs
- Dashed line \rightarrow signal shape for back runs

Optical simulation

- Simulated time distributions for optical photons arrival on the photosensors, for two beam positions
- POS0: centred beam the crystal
- POS1: 3 mm beam offset (towards CH0)
- shaded areas \rightarrow contributions due to light reaching the photosensors directly (i.e., with zero or one reflections)

Positional effects: charge and timingMInternational
Collaboration

PbF2 DATA

- +/- 10 % maximum imbalance in light collection
- anticorrelated effect on timing (T1-T0)
- No significant effects for back-runs
- Similar effects for PbWO4-UF
- Light propagated indirectly is more strongly attenuated due to the longer total path length traversed and the multiple reflections
- earlier arrival times for photons arriving directly

- $-1 10$ [ns] 0.6 • The front mode shows a peculiar distribution both in 0.4 time time difference and charge sharing:
	- \triangleright the relationship between this two quantities can be used as correction function

100

 \triangleright Negligible effect in back runs

 0.5

 -0.5

 -1

T.

Raw AT [ns]

Mean charge [pC]

MC validation: optical simulation MInternational
Collaboration

- Simulated time distributions for optical photons arrival on the photosensors, for two beam positions
- POS0: centred beam the crystal
- POS1: 3 mm beam offset (towards CH0)
- shaded areas \rightarrow contributions due to light reaching the photosensors directly (i.e., with zero or one reflections)

- Confirmation of the positional effects
- Charge asymmetry matched within 20 %
- Smaller timing offsets in simulation wrt data
- mean-time and mean-energy information are always well behaved

Beam test on Proto-0 in a single crystal configuration in fall 2022:

- 10 \times 10 \times 40 mm³ single crystal \rightarrow 2 options: **PbF**₂ $(4.3 X_0)$ **PbWO₄-UF** $(4.5 X_0)$.
- Four 3x3 mm2, 10 μm pixel size SiPMs for two independent readout channels (SiPM pairs connected in series).
- Mylar wrapping No optical grease.

Aim:

- Validate CRILIN new readout electronics and readout scheme.
- Study systematics of light collection in small crystals with high *n.*
- Measure time resolution achievable with different crystal choices.

Two different orientation were tested à **FRONT** and **BACK:**

- The BACK run time resolution is better, even after correction, for both crystals.
- $PbF₂$ outperforms $PbWO₄$ -UF despite its higher light output (purely Cherenkov)
- **PbF₂** $\rightarrow \sigma_{MT}$ < 25 ps worst-case for E_{dep} > 3 GeV

May 29 2024 Developing an alternative calorimeter solution for the future

Beam test @ BTF: Teflon wrapping MInternational
Collaboration

May 22 2024 Design, Testing, and Radiation Resistance of the Crilin Calorimeter Prototype - I. Sarra 27/20

- Test repeated with a Mylar wrapping
- **No annealing after 48h and 60h observed**
- New test planned to evaluate SiPMs PDE loss and optical grease degradation

Charge distribution of PbF₂ pre, after 10 kGy and after 80 kGy irradiation

1. Aluminum matrix to hold the crystals:

1.50-100 µm thickness between crystals 2. Thicker $($ \sim 2mm) in the external envelope with micro channels for cooling

2. Kapton strip for polarization and output signal:

1.Handles polarization and output signals for each channel of two SiPMs in series.

3. Connectors at the back of the 5 assembled modules.

