

ICHEP 2024

Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider

C. Cantone, S. Ceravolo, V. Ciccarella, E. Di Meco, E. Diociaiuti, P. Gianotti, M. Moulson, D. Paesani, I. Sarra, M. Soldani - LNF INFN

F. Colao - ENEA Frascati

E. Leonardi, R. Gargiulo - INFN Sezione di Roma1

A. Cemmi, I. Di Sarcina, J. Scifo, A. Verna - ENEA Casaccia

C. Giraldin, D. Lucchesi, L. Sestini, D. Zuliani - INFN Sezione di Padova

A. Saputi - INFN Sezione di Ferrara

N. Pastrone - INFN Sezione di Torino

G. Pezzullo - Yale University

D. Tagnani - INFN Sezione di Roma Tre

42nd International Conference on High Energy Physics – Prague, Czech Republic, July 18, 2024

Crilin and the Muon Collider

Crilin (CRYstal calorimeter with Longitudinal INformation):

- ECAL R&D for the future Muon Collider: an option for a next-gen facility (see US P5)
 - Physics and detector studies for 3 and 10 TeV Muon Collider designs are ongoing

Muon Collider pros:

- $m_{\mu} >> m_{e}$ (no synchrotron radiation)
- point-like particle: all energy is available in collisions
- Higgs boson studies
- direct search of heavy states

Muon Collider cons:

- τ_0 = 2.2 μ s: very fast cooling and fast-ramping magnets needed
- μ decay + interaction with machine:
 beam-induced background (BIB),
 partially shielded by tungsten nozzles

→ detectors must be able to cope with the <u>BIB</u> and to have good physics performances

Muon Collider requirements

BIB in the ECAL region (after nozzles and tracking system):

- Flux of 300 particles per cm² through the ECAL surface:
 - mainly γ (96%) and n (4%): average photon energy 1.7 MeV
- Time of arrival flatter than physics signals → most of BIB excluded with a clustering window of ~240 ps
- Different longitudinal hit profile wrt signal

See M.Casarsa's talk

- Total lonising Dose: ~1 kGy/year
- Neutron fluence: $10^{14} \, n_{1 MeVeq} / cm^2 / year$

BIB hits in the calorimeters

a MuCol ECAL should have:

- $\sigma_{\rm t} \sim 80 \, \rm ps$
- longitudinal segmentation
- fine granularity
- proper radiation resistance
- $\sigma_E/E \sim 10\%/\sqrt{E}$
- → CALICE-like W-Si sampling calorimeter initially considered as the primary candidate Now Crilin is the baseline choice

The Crilin calorimeter

- Semi-homogeneous ECAL made of crystal matrices interspaced and readout by SiPMs
- Each crystal independently read by 2 channels, each consisting of 2 SiPMs in series.

Key factors for BIB handling:

Excellent timing: (<100 ps) to reject the BIB out-of-time hits and for pileup rejection

Longitudinal segmentation: allows to recognize fake showers from the BIB

Fine granularity: reduced hit density in a single cell to distinguish BIB hits from the signal

Good resistance to radiation: reliability during the experiment to resist BIB TID and neutrons

Crystal choice motivation:

High-density: allows to build a compact system to fulfil space constraints

Fast response: Cherenkov/fast crystals, to have excellent timing and fast rise times

PbF₂ (Cherenkov only) PbWO₄-UltraFast LYSO (to be tested)

S. Ceravolo et al 2022 JINST 17 P09033

Distinctive features:

Semi-homogeneous : unique hybrid between homogeneous and sampling calorimeters → exploit the strengths of both

Flexibility: able to adjust crystal and layers size for tailored solutions

Compactness: Unlike segmented or high granularity calorimeters, CRILIN can optimize energy detection while staying compact

Simulated performances

- ECAL barrel with Crilin technology implemented in the Muon Collider simulation framework
 - > Including digitization from real test-beam waveforms + BIB rejection with timing and longitudinal hit position
 - > 5 layers with 45 mm length, 10 X 10 mm² cell area \rightarrow 21.5 X_0
 - ➤ In each cell: 40 mm PbF₂ + 3 mm SiPM + 1 mm electronics + 1 mm air
- Design optimized for BIB mitigation: with 4.5 cm layers, BIB energy is integrated in large volumes →
 reduced statistical fluctuations of the BIB energy deposit
- Crilin 5 layers competitive wrt W-Si 40 layers → factor 10 less in cost (6 vs 64 Mchannels)

R&D status

Prototype versions

- Proto-0 (2 crystals → 4 channels)
- Proto-1 (3x3 crystals x 2 layers → 36 channels)

Front-end electronics

- Design completed
- Production and QC completed

Beam test campaigns

- Proto-0 at CERN H2 (August 2022)
 - C. Cantone et al. 2023 Front. Phys. 11:1223183
- Proto-1 at LNF-BTF (July 2023-April 2024)
 - C. Cantone et al. 2024 doi:10.1109/TNS.2024.3364771
- Proto-1 at CERN (August 2023)
- Radiation hardness campaigns
 - Both with Neutrons and Gamma rays

Crystals radiation hardness

Tests of two **PbF**₂ and **PbWO**₄**-UF** crystals (both 10x10x40 mm³), for:

- TID (Co-60) @ Calliope, Enea
- · Neutrons (14 MeV) @ FNG, Enea

- > TID < 360 kGy
- ➤ 10¹³ n/cm² neutrons

Crystal	PbF_2	PWO-UF
Density [g/cm ³]	7.77	8.27
Radiation length [cm]	0.93	0.89
Molière radius [cm]	2.2	2.0
Decay constant [ns]	-	0.64
Refractive index at 450 nm	1.8	2.2
Manufacturer	SICCAS	Crytur

- For PbWO₄-UF no significant
 decrease in transmittance after:
 - **→** TID < 2 MGy

⁶⁰Co Gamma rays

Dominant emission with τ < 0.7 ns M. Korzhik et al., NIMA 1034 (2022) 166781

SiPMs radiation hardness

Neutrons irradiation tests: 14 MeV neutrons with a total fluence of 10^{14} n/cm² for 80 hours on a series of two SiPMs (10 and 15 μ m pixel-size)

From I-V curves extrapolation at 3 different temperatures:

- Currents at different operational voltages
- Breakdown voltages

For the expected radiation level, the best SiPMs choice are the 10 μ m ones for their minor dark current contribution.

15 μ m pixel-size

T [°C]	$ m V_{br}~[V]$	$I(V_{ m br}+4V)$ [mA]	$I(V_{ m br}+6V)~[{ m mA}]$	$I(V_{ m br}+8V)~[{ m mA}]$
-10 ± 1	75.29 ± 0.01	12.56 ± 0.01	30.45 ± 0.01	46.76 ± 0.01
-5 ± 1	75.81 ± 0.01	14.89 ± 0.01	32.12 ± 0.01	46.77 ± 0.01
0 ± 1	76.27 ± 0.01	17.38 ± 0.01	33.93 ± 0.01	47.47 ± 0.01

10 μ m pixel-size

T [°C]	$ m V_{br} \ [V]$	$I(V_{ m br}+4V)$ [mA]	$I(V_{ m br}+6V)$ [mA]	$I(V_{ m br}+8V)$ [mA]
-10 ± 1	76.76 ± 0.01	1.84 ± 0.01	6.82 ± 0.01	29.91 ± 0.01
-5 ± 1	77.23 ± 0.01	2.53 ± 0.01	9.66 ± 0.01	37.51 ± 0.01
0 ± 1	77.49 ± 0.01	2.99 ± 0.01	11.59 ± 0.01	38.48 ± 0.01

Dark I @ V_{op}
1.8 vs 13 mA
for 10/15 micron
pixels

10 μm pixel-size **Pre 10kGy**

10 μm pixel-size Post 10kGy

Dark I @ V_{op} goes from 12 nA to 600 nA after 10 kGy

Proto-1: Mechanics and Electronics

Mechanics:

- Two stackable and interchangeable submodules, each composed of 3x3 crystals+36 SiPMs (2 channel per crystal)
- Light-tight case embedding front-end electronic boards and heat exchanger cooling SiPMs

Electronics:

- SiPMs board: custom SiPM array board 36x10 µm Hamamatsu SMD SiPMs
- Mezzanine board: 18x readout channels → amplification, shaping and individual bias regulation, slow control routines

Beam test @ CERN

H2-SPS-CERN, August 2023

SETUP SCHEME WITH DISTANCES

- Electron beam from 40 GeV up to 150 GeV
- Beam reconstructed with 2 silicon strip telescopes
- Data acquisition with 2 CAEN V1742
 (32 ch each) modified @ 2 Vpp
- 5 Gs/s sampling rate

Beam test @ CERN: Configuration

2nd layer: SiPMs parallel

- Two different SIPMs connection in the two layers for testing purposes: series and parallel
- Timing resolution dominated by synchronisation jitter
- Energy resolution dominated by longitudinal leakage (8 X₀ only)

Synchronisation pulses reconstruction:

- O(10 ps) ch-to-ch in the same chip
- O(30 ps) board-to-board jitter

Beam test @ CERN: Energy

Good agreement between data e MC

Crilin: a semi-homogeneous crystal calorimeter for the future Muon Collider - R. Gargiulo

120

Beam test @ CERN: Timing

- Time Resolution of O(20 ps) both in the series and in the parallel layers using the SiPMs time difference of the central crystals
- Excellent results using central crystals of different layers. Time resolution dominated by the 2 boards synchronisation jitter O(32ps)

Beam test @ BTF

BTF, April 2024

- Study of the LY loss of one layer of Proto-1 after Gamma ray irradiation
- Beam: 450 MeV electrons with multiplicity 1
- Beam centered on a different crystal at each run

Beam test @ BTF: crystals

Crystal number

- Crystals tested with two different wrapping, Teflon and Mylar, up to 80 kGy, with same SiPMs
- LY loss evaluated through variation in number of photo-electrons

Teflon wrapping Mean Npe values of PbF₂ pre and post 80 kGy irradiation Output Comparison of Teflon wrapping New Post 80kGy data Post 80kGy mean (15.15) Post 80kGy mean ± 1cr (5.39) Pre irradiation data Pre irradiation mean (57.98) Pre irradiation mean ± 1cr (2.36)

Mylar wrapping Mean Npe values of PbF₂ pre, after 10 kGy and after 80 kGy irradiation

Beam test @ BTF: considerations

- Considerable variability in crystals' response to radiation, despite SICCAS claiming use of high-purity (>99.9%) PbF₂ powder for crystal growth
- Transparency loss was uniform length-wise in the crystals
- Teflon was damaged and brittle
- SiPM dark counts increases significantly with the absorbed dose
- Good operation after extreme TID (16 times MuCol) at low energies:)
- New tests planned to evaluate SiPMs PDE loss and optical grease degradation to disentangle LY losses due to crystals / SiPM

Summary

- Time resolution: < 40 ps for single crystals, for E_{dep} > 1 GeV
- Radiation resistance: PbF₂(PbWO₄-UF) robust to > 350(2000) kGy and SiPMs validated up to 10¹⁴ n_{1MeV}/cm² fluences good operation after irradiation shown at low-energies

- Crilin fulfills requirements -> baseline choice for MuCol, but we can improve:
- Use LYSO or PbWO-UF in the first calorimeter layer
- Conduct new irradiation tests and monitor variations with a blue laser

Next steps (2024 - 2025)

- We submitted and won a PRIN grant for the project <u>CALORHINO</u>: an innovative radiation-hard calorimeter proposal for a future Muon Collider Experiment.
 - → founds assigned to develop a 5x5 x4(layers) Crilin prototype: 1 M_R – 16.8 X₀

DRD6-WP3 from 2025 - proposal submitted

Expanding upon the PRIN prototype to a 9x9x5(layers) configuration, with a target of 2 M_R – 22 X₀

Backup slides

Beam Induced Background

- The beam-induced background (BIB) poses the main challenge for the detector development at the Muon Collider
- Produced by muons decay in the beams, and subsequent interactions with the machine
- The BIB produces a flux of 300 particles per cm² through the ECAL surface
- 96% photons and 4% neutrons, average photon energy 1.7 MeV

Key features:

- **Timing**: BIB hits are out-of-time, a resolution in the order of 100 ps is needed
- Longitudinal segmentation: different profile for signal and BIB
- **Granularity**: helps in separating BIB particles from signal, avoiding overlaps in the same cell
- Energy resolution: target $\frac{\Delta E}{E} \simeq \frac{10\%}{\sqrt{E[\text{GeV}]}}$

Muon Collider

Main issues: BIB and radiation damage
Optimized detector interface:

- Based on CLIC detector, with modification for BIB suppression.
- Dedicated shielding (nozzle) to protect magnets/detector near interaction region.

Radiation enviroment

FLUKA simulation for the BIB at \sqrt{s} =1.5 TeV

- Neutron fluence $\sim 10^{14} \rm n_{\rm 1MeVeq}/cm^2$ year on ECAL.
- TID ~ 1 kGy/year on ECAL.

Effects on waveforms (data)

- Pulse shape modification as a function of impact position selected with different fiducial cuts
- Green → particle incident directly on SiPM pair giving signal
- Magenta → particle incident on opposite SiPM pair
- Purple → particle incident between SiPM pairs
- Dashed line → signal shape for back runs

Optical simulation

- Simulated time distributions for optical photons arrival on the photosensors, for two beam positions
- POS0: centred beam the crystal
- POS1: 3 mm beam offset (towards CH0)
- shaded areas → contributions due to light reaching the photosensors directly (i.e., with zero or one reflections)

Positional effects: charge and timing

PbF2 DATA

- +/- 10 % maximum imbalance in light collection
- anticorrelated effect on timing (TI-TO)
- No significant effects for back-runs
- Similar effects for PbWO4-UF
- Light propagated indirectly is more strongly attenuated due to the longer total path length traversed and the multiple reflections
- earlier arrival times for photons arriving directly

Correction process

- The front mode shows a peculiar distribution both in time time difference and charge sharing:
 - the relationship between this two quantities can be used as correction function
 - Negligible effect in back runs

MC validation: optical simulation

- Simulated time distributions for optical photons arrival on the photosensors, for two beam positions
- POS0: centred beam the crystal
- POS1: 3 mm beam offset (towards CH0)
- shaded areas → contributions due to light reaching the photosensors directly (i.e., with zero or one reflections)

- Confirmation of the positional effects
- Charge asymmetry matched within 20 %
- Smaller timing offsets in simulation wrt data
- mean-time and mean-energy information are always well behaved

Proto-0: Single crystal beam test

Beam test on Proto-0 in a single crystal configuration in fall 2022:

- $10 \times 10 \times 40 \text{ mm}^3 \text{ single crystal} \rightarrow 2 \text{ options:}$ **PbF**₂ (4.3 X₀) **PbWO**₄-**UF** (4.5 X₀).
- Four 3x3 mm², 10 μm pixel size SiPMs for two independent readout channels (SiPM pairs connected in series).
- Mylar wrapping No optical grease.

Aim:

- Validate CRILIN new readout electronics and readout scheme.
- Study systematics of light collection in small crystals with high *n*.
- Measure time resolution achievable with different crystal choices.

Results

Two different orientation were tested -> FRONT and BACK:

- The BACK run time resolution is better, even after correction, for both crystals.
- PbF₂ outperforms PbWO₄-UF despite its higher light output (purely Cherenkov)
- $PbF_2 \rightarrow \sigma_{MT} < 25 \text{ ps worst-case for } E_{dep} > 3 \text{ GeV}$
- **PbWO₄-UF** $\rightarrow \sigma_{\rm MT} < 45$ ps worst-case for E_{dep} > 3 GeV

	\mathbf{PbF}_2	
	back-run	front-run
E _{den} MPV [GeV]	4.26 ± 0.01	4.81 ± 0.03
E_{dep} MPV [GeV] E_{dep} sigma [GeV]	1.35 ± 0.01	1.46 ± 0.02
pC/GeV	~ 29.3	~ 35.6
NPE/MeV	~ 0.30	~ 0.30

	PWO-UF	
	back-run	front-run
E _{den} MPV [GeV]	6.39 ± 0.01	6.88 ± 0.01
E_{dep} MPV [GeV] E_{dep} sigma [GeV]	1.83 ± 0.01	1.99 ± 0.01
pC/GeV	\sim 66.7	~ 76.9
NPE/MeV	~ 0.11	~ 0.13

"Front" mode

"Back" mode

Proto-0

C. Cantone et al. 2023 Front. Phys. 11:1223183

26/16

Beam test @ BTF: Teflon wrapping

After 80 kGy (8 Mrad) irradiation

- · Teflon was damaged and brittle
- Crystals evident loss of transparency

Charge distribution of PbF₂ pre and post irradiation

Beam test @ BTF: Mylar wrapping

- Test repeated with a Mylar wrapping
- No annealing after 48h and 60h observed
- New test planned to evaluate SiPMs PDE loss and optical grease degradation

Charge distribution of PbF₂ pre, after 10 kGy and after 80 kGy irradiation

Crilin Module Prototype

1. Aluminum matrix to hold the crystals:

- 1. 50 μm thickness between crystals
- 2. Thicker (~ 2mm) in the external envelope with channels for cooling

2. Kapton strip for polarization and output signal:

1. Handles polarization and output signals for each channel of two SiPMs in series.

3.Connectors at the back of the 5 assembled modules.

Crilin Module Prototype

- 1. Aluminum matrix to hold the crystals:
 - 1.50-100 µm thickness between crystals
 - 2. Thicker (~ 2mm) in the external envelope with micro channels for cooling
- 2. Kapton strip for polarization and output signal:
 - 1. Handles polarization and output signals for each channel of two SiPMs in series.
- 3. Connectors at the back of the 5 assembled modules.

