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The LUXE project at DESY, Hamburg

LUXE: Laser Und XFEL Experiment
i Torclh 2 e,

LUXE Collaboration
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LUXE milestones documents:

e LOI (2019) 1909.00860 @ at DESY as the host laboratory
e CDR (2021) EPJ ST 230, 2445 - 2560 @ at Eu.XFEL 16.5 GeV electron beam
e TDR (2023) 2308.00515 (EPJ ST Accepted) @ over 20 participating institutes
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@ about 130 active scientists
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Physics Programme at LUXE: Study of QED in the strong field non-perturbative regime

non-linear and non-perturbative QED

LUXE: Two modes of operation
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@ e-laser: using 16.5 GeV XFEL e~ beam
@ ~-laser: using bremsstrahlung ~ photons

o collide them with High Power (40 or 350 TW)
optical Laser (HPL) [phase-0 / phase-1]
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LUXE: the detectors challenge: very high rate of particles

Parameters space and e™ rate Solution for e™ calorimetry: ECAL-p
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@ laser intensity, dimensionless amplitude of & field): compact, high density sampling calorimeter

_ meé&p _
= o Fe WL laser frequency

small Moliére radius: ~ 9.3 mm
high granularity
21 layers of 3.5 mm (1Xo) tungsten absorber

1 mm gaps instrumented with active sensors

v

@ expected positron rate: 10~° — 10° per BX,
EM showers overlap at high multiplicity

y
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ECAL-p: semicon sors investigated on the te

Gallium Arsenide sensor: Silicon sensor:

) o produced by Hamamatsu (CALICE design)
National Research Tomsk State University . .
. . Si crystals: p+ on n substrate diodes
GaAs crystals compensated with chromium
a 5.5 x 5.5 mm? pads, 0.01 mm gap between pads
4.7 X 4.7 mm* pads, 0.3 mm gap between pads L
. few nm pads Al metalization
pads are made of 0.05 pum vanadium layer .
. sensor thickness 500 pum (320 um)
sensor thickness 500 pum
. total wafer area: 89.7 x 89.7 mm?
total wafer area: 51.9 x 75.6 mm

. ) external kapton fan-outs with copper traces
1 pm thick Al traces in the gaps between pads connected to the sensor pads with conductive glue
v

better radiation tolerance than silicon
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FLAME/FLAXE front-end ASIC designed by AGH University of Krakow

o FLAME (Fcal Asic for Multiplane rEadout) is a 32-channel ASIC in CMOS 130 nm

@ 10-bit ADC in each channel, two fast (5.2 Gbps) serializers and data transmitters

@ FLAME has been already used in several test-beams of FCAL and LUXE-ECAL collaborations

o final DAQ version will use a new front-end ASIC FLAXE, which is based on FLAME (in progress)

FLAME ASIC specification 32-channel FLAME ASIC

@ Analog front-end in each channel:

o CR-RC shaping (Tpeak ~ 50 ns) ¢ = L I

o two switched gains
(high gain for MIPs, low gain for showers) Ji= =
= = r.,;;:.:r
S e =

o Cip ~ 20 — 40 pF
e

@ 10-bit ADC per channel:

o fuample = 20 MHz

o ENOB > 9.5 (effective resolution)

o FPGA to extract amplitude and time
o Power < 350 uW @ 20 MHz
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Test beam setup, DESY, Hamburg (September 2022)

Beam telescope (EUDET collaboration), scintillators and Detector Under Test (DUT)

o Electrons arrive from the right, pass the first scintillator, then six ALPIDE pixel sensors, the second
scintillator, and hit the sensor, denoted as DUT (Detector under Test)
~ 35 pum resolution of the track extrapolated from the TB telescope

q 3
— — — — — -1 ____
p--<---
53
cnmemmenneneeeeeeeasleheeneeeesl (Measurement in mm)  feercenefreeans
377 304
Telescope Telescope
DUT (Planes 3-5) (Planes 0-2)

@ Two 16 x 8 pad arrays of Silicon sensors and two 15 x 10 pad arrays of GaAs sensors were tested
on 5 GeV electron beam at the DESY-II facility

@ investigated were homogeneity of the sensor response, edge effects and signal sharing between pads

@ in addition: test of the FPGA based data on-line preprocessing (amplitude and time reconstruction)
QI . 77— L




XY hits distribution

As sensor (2 x 2 pad Si sensor (2 x 2 pads

= 50 — = 50 &
s ° 2 )
@ < 2 °
g e 5 40 2
[} 40 £ 1%} é-
S £ > <

30 30

20 20

10 10

825 850 875 9.00 925 950 975 ° 825 850 875 9.00 925 950 9.75 0
X [Sensor unit] X [Sensor unit]
o i

o after alignment with beam telescope (~ 35 pm resolution on DUT XY)
@ color (Z scale) indicates the size of the signal
@ loss of signal for GaAs sensor in the region between pads
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Sensor homogeneity study

GaAs sensor
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@ Pads were subdivided into 10 x 10 XY sections and plotted was amplitude distribution in each section
o Fits of Landau distribution convoluted with Gaussian — Most Probable Value (MPV) on next page

@ color (Z scale) encodes the statistic of hits
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Sensor homogeneity study (cont.) : 10 x 10 pad subsections

GaAs sensor (single pad) Si sensor (single pad)

BE 1.

@ GaAs: Drop in amplitude around edges and

. @ Si: more uniform response, but...
esp. in corners

~ @ ... L-shaped area of a bit higher amplitude

@ color (Z scale) encodes the MIP value
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Sensor homogeneity study (cont.) : 100 vertical (YY) strips on pad

GaAs sensor (single pad) Si sensor (single pad)
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@ GaAs Y scan: MPV drop : 50% wrt pad center ) @ Si Y scan: MPV drop : 2-3% wrt pad center

o Normalized to MPV of central strip. Similar response along X direction
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GaAs sensor: signal sharing between pads

GaAs sensor: 2 x 1 neighbor pads: X scan GaAs sensor: 2 x 1 neighbor pads: Y scan
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@ X scan - traces between pads @ Y scan - without traces between pads
@ sum of MPV drops of 40% ) @ sum of MPV drops of 15%
v

@ MPV measured as a function of x and y, crossing the area between two pads

o gap between GaAs pads 300 um
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Si sensor: signal sharing between pads

Si sensor: 2 x 1 neighbor pads: X scan
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@ no signal drop is observed

Si sensor: 2 x 1 neighbor pads: Y scan

@ MPV measured as a function of x and y, crossing the area between two pads

e gap between Si pads 10 um

G. Grzelak (University of Warsaw)
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Uniformity of front-end amplification

Relative gain [a.u.] Relative gain [a.u.]
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o relative gain vs. chanel number for 4 ASICs o distribution of relative gains
@ using calibrated charge injector e RMS ~ 2% )
(2 — 12 fC for MIPs gain)
v

@ good homogeneity of front-end preamplifiers, some dependence on ASIC fabrication
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Gain corrected MPV

MPV: GaAs sensors MPV: Si sensors
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e MPV distribution after gain correction, excluding edge effect (20% margin)

G. Grzelak (University of Warsaw) LUXE ECAL-p TB ICHEP 2024 15 / 24



Comparison with Geant4 MC simulation

response of a Si sensors to 5 GeV electrons response of a Si sensors to 5 GeV electrons

o energy loss dE/dx [GeV] in 500 um Si sensor
from Geant4 é i LUXE ECAL-p
. 5 20001 o Testbeam data 7]
@ energy loss converted into number of charge F Geants ]
carriers using 3.6 eV per electron-hole pair 1500 F B
@ gain of the read-out chain determined from 1000k ]
charge injection: 3.45 LSB/fC b ]
@ as a cross-check 3.46 LSB/fC was obtained 500¢ 3
fitting the gain as a free parameter £ ] )
’ A I
?} 100 — -
G O075p , o e e e et
E 0 20 40 60 80 100
© Amplitude of signal [LSB]
@ good agreement DATA/MC for MIP
v
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e two types of semiconductor sensors (GaAs and Si) for high density EM calorimeters were tested at
5 GeV electron beam at DESY

@ energy losses for MIPs are well described by Landau distribution convoluted with Gaussian function
@ homogeneity and signal sharing study were performed using hit position from the beam telescope

o for GaAs sensors edge effect are observed related to aluminum tracers and bigger gap between pads
(up to 40-50% signal drop)

o for silicon sensor edge effects are barely visible

@ after gain correction, in the central region of pads the homogeneity of the sensors amounts to 2.8 and
3.2 % for the GaAs and Si sensors, respectively

o collected data are in good agreement with Geant4 based MC

o readout electronics absolute gain agrees between MC simulations and independent lab measurement
(converting the energy loss into charge and using the gain of the readout chain)
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e two types of semiconductor sensors (GaAs and Si) for high density EM calorimeters were tested at
5 GeV electron beam at DESY

@ energy losses for MIPs are well described by Landau distribution convoluted with Gaussian function
@ homogeneity and signal sharing study were performed using hit position from the beam telescope

o for GaAs sensors edge effect are observed related to aluminum tracers and bigger gap between pads
(up to 40-50% signal drop)

o for silicon sensor edge effects are barely visible

@ after gain correction, in the central region of pads the homogeneity of the sensors amounts to 2.8 and
3.2 % for the GaAs and Si sensors, respectively

o collected data are in good agreement with Geant4 based MC

o readout electronics absolute gain agrees between MC simulations and independent lab measurement
(converting the energy loss into charge and using the gain of the readout chain)

o Thank You Very Much for Your Attention !
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BACKUP PLOTS

BACKUP PLOTS FOLLOWS...
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CPA: Chirped Pulse Amplification

CPA - chirped pulse amplification U ISR

and its intensity increases
dramatically.

Short light pulse The pulse is stretched, The stretched

from a laser. which reduces pulse is amplified.
its peak power.

Grating pair, Amplifier Grating pair,
pulse stretcher pulse compressor

©Johan Jarnestad/The Royal Swedish Academy of Sciences

8 Nobel Pize Donna Strickland and Gerard Mourou
“for method of generating high-intensity, ultra-short optical pulses”

G. Grzelak (University of Warsaw) LUXE ECAL-p TB ICHEP 2024 20 /24



Laser beam: field characteristic

dimensionless intensity parameter (filed energy density) &2

2 __ EL \2 _ ([ meSL\2 “ . . "
o & =Ara( L) = (555)°  ‘“classical picture
wy - laser frequency, £ - “dimensionless amplitude” of & field

° §2 = 47roz7\L?\2CnL, < “quantum picture”
AL and Xc¢ - reduced laser and Compton wavelengths,
XL~ 1 pum
Ac ~ 10° pam
n; - number density of laser photons

o for low and moderate £ <1 the probability of net absorption
of n laser photons o (£2)" ~ "

(consistent with perturbative QED vertex counting)
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Non-linear Compton ~y spectrum

|
Il
oH

NHO OO
couiNiR

10° { 6x109, 17.5 GeV electrons. 800nm laser
17° crossing angle, square pulse.

R T )

109 Photons/35 fs

Radiated photon energy (GeV)

o low laser intensity (£) — KleinNishina process
e ¢ A/ increasing flux of Compton photons
e & U shift of Compton edge with laser intensity (— next page)

@ additional structure due to multi-photon absorption
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Non-linear Compton ~y spectrum

e +ny—e +7v

@ for monochromatic, circularly polarized laser pulse: |&| = const
@ in transverse plane circular motion of electron with frequency w;

o energy accumulated in this transverse degree of freedom can be treated as extra,
effective mass of the electron

@ electron transverse momentum: P, ~ &m
o E2=m’+ P} + Pf ~ (1+&)m* + P}

o electron effective mass: m = my/1 + &2

— shift of the lowest order Compton edge
(scaling as 1/4/1 + &€2)

@ —> can be used to monitor the intensity parameter &
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Rate of eTe™ pair production

full calculation and asymptotic behavior (dotted-dashed)
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@ in a constant static field: oc exp (—7 %) (Schwinger process)

o in plane wave laser (asymptotic): oc exp (—& L me far)

3 14cosb w; &
@ good agreement for £ < 1 and £ > 1

@ initial growth with & then drop due to the Compton edge shift
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