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I. Motivation

In a neutrino or dark matter experiment, to im-
prove energy and timing resolution with wave-
form analysis,
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Fig. 1: Sketch of an liquid
scintillator detector, such as JNE,
JUNO, KamLAND, Borexino.

-SMP is a reliable analysis method in Bayesian
sense. It deals with pile-ups, and gives better
resolution of © and ¢.

I1I. Bayesian waveform analysis
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Fig. 2: Sample PEs from Poisson process Fig. 3: Convolve PEs into a waveform

The event energy £ and position » may be estimated by MLE:
p(:ua tO‘Ev T‘)p(E, ’l")
p(:“? t()l'LU)

(E, r) = argmax p(F, r|u, ty, w) = arg max
b.r Er

I11. Charge model for MCP-PMTs

There are two kinds of PE in MCP-PMTs
(arXiv 2402.13266) [1]. We use a mix-

Photoelectron ture of multiple normal distributions to

Q Y represent the charge model.
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Fig. 4: A sketch of MCP and MCPes. APE  Fig. 5: A sketch of the charge model of an
may go through the microchannel, or hit on MCP-PMT. The vertical axis represents the
the ALD coated surface. number of waveforms.

IV. The MCMUC steps in FSMP

Fast stochastic matching pursuit (FSMP, arXiv 2403.03156) [2, 3] supports any

charge model constructed with multiple normal distributions, including MCP-
PMTs’ charge model.
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Fig. 6: The sketch of jumps of z and sampling ;. The RIMCMC and Metropolis-Hastings
samplers are mixed with the Gibbs sampling.

arXiv:2403.03156

V. Bias and resolution
The relative resolution of 1, and the resolution of ¢ are defined as
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where Npg is number of PEs. In the most optimistic case, the resolution im-
provement of 1 could be seen as the improvement of energy resolution.
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Fig. 7: The relative bias of /.. Fig. 8: The relative resolution of /i.

The charge method is the integration of waveforms.
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Fig. 9: The bias of #,.

The lower limit method is M-H sampling with true PE sequence; the 1st method
uses the first PE time as event time, which is biased.

Fig. 10: The resolution of ¢,.

VI. GPU acceleration

FSMP is accelerated with batched algorithm on GPU: a lot of waveforms are
operated together, instead of analyzing them one by one.
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Fig. 11: A sketch of the original and the batched algorithm.
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VII. Summary

* Better energy resolution: up to (12.2 = 1.4) % better (1 = 1).
* Better timing resolution: unbiased, (37.5 4+ 1.8) % better (u = 1).

e High performance: ~100 waveforms per second, ~1000 times faster on con-
sumer GPUs than CPUs.
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