Measurements of Higgs boson production and decay rates and their interpretation with the ATLAS experiment

Xiao Yang

CERN

On behalf of the ATLAS collaboration

ICHEP, 2024, Prague

Overview of Higgs Production and Decay

- Couplings are probed both in production and decay
- Loop contributions are in many cases more important for testing BSM theories
- Gluon-gluon fusion (ggF) the dominant production mode
- Vector boson fusion (VBF) subdominant
- ttH offers direct measurement of top –Higgs coupling

Cross sections

Fiducial cross section

Cross sections measured in a phase space closely matching detector acceptance

- → Avoids extrapolation of results into phase space out of acceptance
- → Increases measurement precision
- → Extrapolation to full phase space is required to combine analyses

Simplified Template Cross Sections (STXS)

Multiple non-overlapping phase space regions based on production mode of the Higgs boson, kinematics of the process

- → Reduces theoretical uncertainties
- → Common framework for combination of orthogonal decay channels
- → Large pT bins are sensitive for BSM physics search

Defined in stages with increasing granularity

Interpretations

- BSM physics modify the Higgs couplings
- Deformations are model dependent, but which model?
- Two frameworks for "parametrising our ignorance"

Overview of Recent Results

Data: 139 fb-1, full ATLAS Run 2

Measurements: Fiducial single + double $d\sigma$

Final states with <=1 j are considered

Fit is performed to m_T in each bin of observable which sensitive to higher-order corrections (eg. nJets), PDF (eg. yH), Higgs couplings in production (eg. pTH) and decay (eg. mll)

$$m_T = \sqrt{\left(E_T^{ll} + E_T^{miss}\right)^2 - \left|\mathbf{p}_T^{ll} + \mathbf{E}_T^{miss}\right|^2} \qquad E_T^{ll} = \sqrt{\left|\mathbf{p}_T^{ll}\right|^2 + m_{ll}^2}$$

Dominant sources of uncertainty:

- Jet, muon reconstruction
- t, WW backgrounds
- Difficulty in modelling Z/y

Phys.Rev.D 108 (2023) 7, 072003

W

$H \rightarrow WW^* \rightarrow ev\mu v$

Data: 139 fb-1, full ATLAS Run 2

Measurements: : σ in full phase space, STXS

New from last iteration: (arXiv:1808.09054, 36.1 fb⁻¹)

Larger dataset

ggF in \geq 2 j final state – increase in statistics

Cross section reported in 11 STXS bins

Analysis performed in 4 regions – for ggF Nj=0,1, ≥ 2 , for VBF Nj ≥ 2

Fit to mT in ggF regions, fit to DNN trained on VBF vs. others for VBF

ggH-0j , *p*_{_{T}}^{_{H}} < 200 GeV

ggH-1j, *p*^{*H*}₋ < 60 GeV

Total

-0.16

+0.57

-0.59

1.21

0.82

HH Total

(Stat. Syst.)

+ 0.08

+0.30

-0.08,

-0.30,

Statistical Unc.

SM Prediction

-0.13

+0.49

-0.51

Systematic Unc.

SM Unc.

± 0.07

± 0.14

ATLAS

p-value = 53%

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

 $H \rightarrow WW^* \rightarrow ev\mu v$

VH, H→ WW*

Data: 139 fb-1, full ATLAS Run 2

Measurement: inclusive cross-section

Different MVA discriminants adapted to background composition are used

- ANN for multiclassification of signal + multiple backgrounds
- RNN for S/B classification, events as arbitrarily long sequences of objects

• BDT

Used input variables based on reconstructed object kinematics

Dominant systematic uncertainties in WH:

RNN shape due to RNN mismodelling

W/Z

W

W

W/Z

• W(Z/gamma), WWW background

Channel	Pookaroundo
Channel	Backgrounus
OS, 21	tt, Wt
SS, 2I	W(Z/gamma), W+gamma,W+jets
31	W(Z/gamma), WWW
41	ZZ, WWZ

ATLAS-CONF-2022-067

Combination of differential cross section measurements in $H{\rightarrow}ZZ^*{\rightarrow}4I$ and $H{\rightarrow}\gamma\gamma$

Data: 139 fb-1, full ATLAS Run 2

- Combination of arXiv:2004.03969 and arXiv:2202.00487 Inclusive measurement for all H production modes
- Extrapolation to common phase space of both channels and combination
- Unprecedented 7% precision for $\sigma(pp \rightarrow H)$ measurement due to larger dataset and combination of channels
- Measurement of differential cross sections: p_T^H , $|y_H|$, N_j , $p_T^{lead.,jet}$ each probing different aspect of Higgs production

Combined measurements

Combination of multiple Higgs analyses in multiple decay channels and production processes was performed

Combined measurements are consistent with the SM

Combination in STXS

Nature 607, 52 (2022)

 $gg \rightarrow H$ $p_{\rm T}^{\rm H}$ < 200 GeV $p_{\rm T}^H \ge 200 \, {\rm GeV}$ Combination of multiple Higgs analyses in multiple decay channels and production processes was = 0 jets =1 jet ≥2 jets performed (Nature 607, 52-59 (2022)) m_{jj} < 350 GeV *m_{jj}* ≥ 350 GeV 30 [qd] 20 ع σ [pb] σ [pb] σ [pb] [q] 10³ σ 1.5 V(*{*{*t*, *t*v)H 1.0 102 10 0 $qq' \rightarrow WH \rightarrow H\ell v$ $pp \rightarrow ZH \rightarrow H\ell\ell$ 0.5 0 σ [fb] σ [fb] 10³ -2<u></u> 0 0.0 10¹ 200 10² 10 200 0 60 120 200 120 200 300 450 ∞ p_{T}^{H} [GeV] p_{T}^{H} [GeV] $p_{\rm T}^{\rm H}$ [GeV] p_{T}^{H} [GeV] 10² 10¹ 10¹ 10⁰ $qq \rightarrow qqH$ 10⁰ 75 250 400 250 400 150 0 150 0 ∞ ω ≥2 jets ≤1 jet p_T^W [GeV] p_T^Z [GeV] *m_{jj}* < 350 GeV *m_{ii}* ≥ 350 GeV tīH tH $p_{T}^{H} < 200 \text{ GeV}$ $p_T^H \ge 200 \text{ GeV}$ [q] 000 [q] 0750 q] 200 م ر م [dd] م [q] 100 σ [pb] σ [fb] • 500 500 100 50 250 0 0 0 • n 0 60 120 200 300 450 0 ∞ 0 -2 VH-enriched VBF-enriched 700 1500 350 1000 350 1000 ∞ ∞ $p_{\rm T}^{\rm H}$ [GeV] m_{ii} [GeV] m_{ii} [GeV]

Combined measurements are consistent with the SM

Combination in STXS

Combination EFT interpretation

- First ATLAS global EFT fit
- Framework allows to include additional measurements to improve the combination
- Multiple combined measurements:
 - ATLAS Higgs boson data
 - ATLAS EW data
 - EW precision observables (EWPO) from LEP and SLC
- Cross sections and branching ratios reparametrized in terms of wilson coefficients in STXS, constraints on 28 Wilson coefficients are determined in Higgs analyses

Run 3 H \rightarrow ZZ* \rightarrow 4I + H \rightarrow $\gamma\gamma$

Data: 31.4 fb-1 @13.6 TeV (H→γγ)

29.0 fb-1 @13.6 TeV ($H \rightarrow ZZ^* \rightarrow 4I$)

- Measurement: Full phase space σ + fiducial & full phase space σ in each channel
- Each channel measured in fiducial phase space and extrapolated to full phase space for combination

HCRUN

Rare Higgs decays

• Data: 139 fb-1 @13 TeV ($H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$)

Phys. Rev. Lett. 132 (2024) 021803 Phys. Lett. B 812 (2021) 135980

700 E Weighted Events / 2 GeV Weighted events / GeV ATLAS 🔶 Data ATLAS and CMS 600<u></u>⊢ Total pdf $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 60 LHC Run 2 Data - Signal pdf $H \rightarrow \mu\mu$, ln(1 + S/B) weighted 500 ln(1 + S/B) weighted --- Bkg. pdf Signal + background 50 Background 400È 300⊢ 40 • H →Zγ **200** ⊟ 30 100⊟ 20 Data - Bkg Bkg Data 115 120 125 130 135 150 155 160 110 140 145 120 125 130 135 m_{μμ} [GeV] 115 140 145 m_{Zv} [GeV] • H \rightarrow µµ has BF of 2×10⁻⁴ ATLAS • First evidence for $H \rightarrow Z\gamma$ with ATLAS and CMS combination measures 2σ (CMS over 3σ)

- ATLAS 2.2 $\sigma,$ CMS 2.8 $\sigma,$ ATLAS+CMS 3.4 σ

Conclusion

Run 2:

– Differential and inclusive cross sections from recent measurements are presented in the ATLAS experiment in STXS, full and fiducial phase spaces.

- Combined measurements are interpreted in the SMEFT and kappa frameworks

– Improved precision compared to Run-1 due to increased statistics and improved analysis methods, entering precision measurements era.

Run 3:

- First analyses at 13.6 TeV have been published

All results are consistent with the SM

Dataset of LHC is expected to increase by a factor of 20 by 2040

Constraints on κ_c , κ_b

Higgs coupling to cc is very challenging - low BR, high jet background Combining VHcc and VHbb

yields a 95%CL constraint $|\frac{\kappa_c}{\kappa_b}| < 4.5 =>$ Higgs coupling is weaker to c than to b at 95% CL

```
In H\rightarrow ZZ*\rightarrow4l + H\rightarrow\gamma\gamma, d\sigma/dp_T^H is used to derive limits on \kappa_c , \kappa_b .
```

Most stringent constraints on κ_c in two scenarios – decays to BSM particles allowed/not allowed

No BSM contributions κ_c free or $\kappa_c = \kappa_t$

Event display

