Higgs Self-Coupling at Linear e+e- Colliders

ICHEP 2024 Prague July 20, 2024

Bryan Bliewert^{1,2}, Jenny List¹, Dimitris Ntounis³, Junping Tian⁴, Julie Torndal^{1,2}, Caterina Vernieri³

- ¹ Deutsches Elektronen-Synchrotron DESY
- ² Univeristät Hamburg
- ³ SLAC
- ⁴ Tokyo University

- Introduction: The tri-linear Higgs coupling is different \bullet
- Towards an Update of the ZHH analysis \bullet
- Choice of E_{CM} and interplay with BSM lacksquare
- Conclusions \bullet

Introduction: The Higgs self-coupling is different...

Deviation of \lambda from SM prediction can be large even if all other couplings are SM-like

from dimensional analysis

Self-Coupling Dominance

In other words, no obstruction to having Higgs self-coupling modifications a "loop factor" greater than **all** other couplings. Could have

$$\left|\frac{\delta_{h^3}}{\delta_{VV}}\right| \lesssim \min\left[\left(\frac{4\pi v}{m_h}\right)^2, \left(\frac{M}{m_h}\right)^2\right]$$

without fine-tuning any parameters, as big as

$$(4\pi v/m_h)^2 \approx 600$$

which is significant!

Durieux, MM, Salvioni. 2022

M. McCullough @ LCWS2024

or from UV complete BSM models

Concrete example: 2HDM:

[taken from F. Arco '24]

Parameter scan in the 2HDM (all types): [F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

\sim $ r$ r r h					
ϕ	Type	$\kappa^{(0)}_\lambda$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$
ϕ	Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]
$\phi \qquad h$	II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]
h	LS	[0.5, 1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]
ϕ	FL	[0.7, 1.0]	[0.8,5.6]	[-1.6, 1.3]	[-1.9, 1.5]
$\phi=H,A,H^{\pm}{}^{h}$			(results	from the effect	tive potential)

- Very large corrections are possible! $\lambda_{hhh}^{(1)} >> \lambda_{hhh}^{(0)}$
- h couplings to heavy Higgs bosons can be large ($\lambda_{h\phi\phi} \sim 15$)
 - Even at the *alignment limit* !!! (In the SM, top-loops are $\sim -8\%$)

 \Rightarrow effect of the extended BSM Higgs sector!

S.Heinemeyer @ LCWS2024

Deviation of \lambda from SM prediction can be large even if all other couplings are SM-like

from dimensional analysis

M. McCullough @ LCWS2024

or from UV complete BSM models

S.Heinemeyer @ LCWS2024

Direct measurement of \lambda at e+e- colliders

> degredation of sensitivity in ZHH by diagrams without λ

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

Direct measurement of \lambda at e+e- colliders

Direct measurement of \lambda at e+e- colliders

-Higgs
HC <u>(47%)</u> HC (40%) -ee/eh/hh (18%) CC
-eh ₃₅₀₀
ee_{365}^{4IP} (14%) ee_{365} (19%) ee_{240} (19%) (25%)
。 (27%)
₀ <u>(29%)</u>
(17 <u>%)</u> 3000 (35%)
(41%) (46%)

1. Extraction from single Higgs did not include top operators, 4-fermion op's contributions only recently [Dawson et al, arXiv:2406.03557]

-Higgs
HC <u>(47%)</u> HC <u>(40%)</u> -ee/eh/hh (18%) CC
-eh ₃₅₀₀
-ee ^{4iP} ₃₆₅ (14%) -ee ₃₆₅ (10%)
(19%) -ee ₂₄₀ (19%)
⁰⁰ (25%)
⁰ (27%)
。 <u>(29%)</u>
(<u>17%)</u>
(35%)
1500 (41%)
(46%)
th HL-LHC

1. Extraction from single Higgs did not include top operators, 4-fermion op's contributions only recently [Dawson et al, arXiv:2406.03557]

single-Higgs

50% (47%) 50% (40%) FCC-ee/eh/hh

> 33% (19%) 49% (19%)

49% <u>(29%)</u> CEPC 49% (17%) 49% (41%)

At lepton colliders, double Higgs-strahlung, $e^+e^- \rightarrow$ ZHH, gives stronger constraints on positive deviations ($\varkappa 3 > 1$), while VBF is better in constraining negative deviations, ($\varkappa 3 < 1$). While at HL-LHC, values of $\varkappa 3 > 1$, as expected in models of strong first order phase transition, result in a smaller double-Higgs production cross section due to the destructive interference, at lepton colliders for the ZHH process they actually result in a larger cross section, and hence into an increased precision. For instance at ILC₅₀₀, the sensitivity around the SM value is 27% but it would reach 18% around $\varkappa_{3} = 1.5$.

2. Figure ONLY for $\lambda = \lambda_{SM}$

1. Extraction from single Higgs did not include top operators, 4-fermion op's contributions only recently [Dawson et al, arXiv:2406.03557]

-Higgs
HC (47%)
.HC
<u>.(40%)</u> -ee/eh/hh
(18%)
CC

At lepton colliders, double Higgs-strahlung, $e^+e^- \rightarrow$ ZHH, gives stronger constraints on positive deviations ($\varkappa 3 > 1$), while VBF is better in constraining negative deviations, $(\varkappa 3 < 1)$. While at HI_IHC values of $\varkappa 3 > 1$, as expected in models of This talk: limitations and prospects der phase transition, result in a smaller production cross section due to the destructive interference, at lepton colliders for the ZHH process they actually result in a larger cross section, and hence into an increased precision. For instance at ILC₅₀₀, the sensitivity around the SM value is 27% but it would reach 18% around $\varkappa_{3} = 1.5$.

2. Figure ONLY for $\lambda = \lambda_{SM}$

Towards an update of the ZHH Analysis

Full Simulation of the ILD Detector Concept

previous analysis & update

Key requirements from Higgs physics:

- **p**_t resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- vertexing (H \rightarrow bb/cc/tt) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- jet energy resolution (H \rightarrow invisible) 3-4%
- hermeticity (H \rightarrow invis, BSM) θ_{min} = 5 mrad

Determine to key features of the **detector**:

- low mass tracker: eg VTX: 0.15% rad. length / layer)
- highly-granular calorimeters, optimised for particle flow
- 3.5-4T solenoidal B-field

Full Simulation of the ILD Detector Concept

previous analysis & update

Key requirements from Higgs physics:

- **p**_t resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- vertexing (H \rightarrow bb/cc/tt) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- jet energy resolution (H \rightarrow invisible) 3-4%
- hermeticity (H \rightarrow invis, BSM) θ_{min} = 5 mrad

Determine to key features of the **detector**:

- low mass tracker: eg VTX: 0.15% rad. length / layer)
- highly-granular calorimeters, optimised for particle flow
- 3.5-4T solenoidal B-field

Full Simulation of the ILD Detector Concept

previous analysis & update

Key requirements from Higgs physics:

- **p**t **resolution** (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- vertexing $(H \rightarrow bb/cc/TT)$ $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- jet energy resolution (H \rightarrow invisible) 3-4%
- hermeticity (H \rightarrow invis, BSM) $\theta_{min} = 5$ mrad

Determine to key features of th

- low mass tracker: eg VTX: 0.15% rad. leng
- highly-granular calorime particle flow
- 3.5-4T solenoidal B-field

Possible since experimental environment in e+e- very different from LHC:

- much lower backgrounds
- much less radiation
- Linear Colliders: lower collision rate enables
 - passive cooling only => low material budget triggerless operation

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICH

The previous ZHH Analysis ILC500 based on ILD DBD2013

> extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps e.g. lepton and flavor tagging, background rejection etc.
- event counting weighted by m_{HH}^2 for further sensitivity enhancement

> precision reach after running $4ab^{-1}$ at 500 GeV (HH → $b\bar{b}b\bar{b} + HH → b\bar{b}W^{\pm}W^{\mp}$)

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

 $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}$ = 26.6% (10% with additional upgrade to 1 TeV)

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

The previous ZHH Analysis ILC500 based on ILD DBD2013

> extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps e.g. lepton and flavor tagging, background rejection etc.
- event counting weighted by m_{HH}^2 for further sensitivity enhancement

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

8 σ observation of ee -> ZHH

 $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}$ = 26.6% (10% with additional upgrade to 1 TeV)

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

> precision reach after running $4ab^{-1}$ at 500 GeV (HH → $b\bar{b}b\bar{b} + HH → b\bar{b}W^{\pm}W^{\mp}$)

The previous ZHH Analysis ILC500 based on ILD DBD2013

> extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps e.g. lepton and flavor tagging, background rejection etc.
- event counting weighted by m_{HH}^2 for further sensitivity enhancement

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

8 σ observation of ee -> ZHH

 $\Delta\lambda_{\rm SM}/\lambda_{\rm SM}$ = 26.6% (10% with additional upgrade to 1 TeV)

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

Bottlenecks of the ZHH analysis As identified during 2014 analysis and (relative) improvement impact

- > jet pairing and jet misclustering: "perfect" jet clustering $\rightarrow 40\%$ improvement improve di-jet mass resolution
- > removal of $\gamma\gamma$ overlay: 15% improvement expected also: improve ISR reconstruction
- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as $H \rightarrow b\overline{b}$ is the dominant Higgs decay channel
- \succ adding $Z \rightarrow \tau \tau$ channel: 8% improvement expected include a yet unaccounted decay channel
- > more modern ML architectures for signal/background selection improvement expected when transitioning from BDTs to (e.g.) transformer-based models etc.
- Separation of ZHH diagrams with/without the self-coupling would directly improve the sensitivity on λ (lower sensitivity factor)

Expected relative improvements from DESY-Thesis-16-027

Bottlenecks of the ZHH analysis As identified during 2014 analysis and (relative) improvement impact

- > jet pairing and jet misclustering: "perfect" jet clustering $\rightarrow 40\%$ improvement improve di-jet mass resolution
- \succ removal of $\gamma\gamma$ overlay: 15% improvement expected also: improve ISR reconstruction
- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as $H \rightarrow b\overline{b}$ is the dominant Higgs decay channel
- \succ adding $Z \rightarrow \tau \tau$ channel: 8% improvement expected include a yet

 $=> 5 \sigma$ discovery of λ_{SM} > more mod improvement expected when transitioning from BDTs to (e.g.) transformer-based models etc.

Separation of ZHH diagrams with/without the self-coupling would directly improve the sensitivity on λ (lower sensitivity factor)

if 25% (rel.) improvement out of (a combination) of these

Expected relative improvements from DESY-Thesis-16-027

Flavour-Tagging with ML

ParticleNet and ParticleTransformer (ParT)

- significant improvements wrt LCFIPlus achieved
- NEW: receipe to perform inference from Marlin MarlinMLFlavorTagging

=> essential for application in full reconstruction & analysis chain!

Flavor tagging performance of LCFIPlus vs. ParticleNet using ILD full simulation. M. Meyer [2023]

Flavour-Tagging with ML

ParticleNet and ParticleTransformer (ParT)

- significant improvements wrt LCFIPlus achieved
- NEW: receipe to perform inference from Marlin <u>MarlinMLFlavorTagging</u>
 => essential for application in full reconstruction & analysis chain!

	b-tag 8	0% eff.	c-tag 8		
lethod	c-bkg acceptance	uds-bkg acceptance	b-bkg acceptance	uds-bkg acceptance	
CFIPlus	10%	1%	10%	2%	
ParT	1.29%	0.25%	1.02%	0.43%	Jenny List

Flavour-Tagging with ML

ParticleNet and ParticleTransformer (ParT)

- significant improvements wrt LCFIPlus achieved
- NEW: receipe to perform inference from Marlin MarlinMLFlavorTagging

=> essential for application in full reconstruction & analysis chain!

		Eva ana	aluation o alysis ong	of impact going, po	in ZHH otential	
	b-tag 80% eff.			c-tag 8		
lethod	acc	c-bkg ceptance	uds-bkg acceptance	b-bkg acceptance	uds-bkg acceptance	
CFIPIus		10%	1%	10%	2%	
ParT	1	.29%	0.25%	1.02%	0.43%	Jenny

Neutrino Correction with Vertexing, PFlow and Kinematic Fi Improved m(bb) invariant mass reconstruction

- For semileptonic decay (SLD) processes
 - already in ZH $\rightarrow b\overline{b}/c\overline{c}$, 66% of events include at least one SLD
- > procedure:
 - identify/tag heavy quark jet
 - identify lepton in jet
 - calculate neutrino four momentum from kinematics with kinematic fitting, the best solution is selected
- > status: in production (in MarlinReco)

Recovering the neutrino kinematics. Y. Radkhorrami [2022]

Neutrino Correction with Vertexing, PFlow and Kinematic Fi Improved m(bb) invariant mass reconstruction

- For semileptonic decay (SLD) processes
 - already in ZH $\rightarrow b\overline{b}/c\overline{c}$, 66% of events include at least one SLD
- > procedure:
 - identify/tag heavy quark jet
 - identify lepton in jet
 - calculate neutrino four momentum from kinematics with kinematic fitting, the best solution is selected
- > status: in production (in MarlinReco)

Evaluation of impact in ZHH analysis ongoing

Recovering the neutrino kinematics. Y. Radkhorrami [2022]

In theory the optimal observable...

generator level check

> excellent separation

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

Choice of Ecm — and interplay with BSM

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

J.Tian, LCWS2024

Discovery can be guaranteed

ILC500: 23% ILC550: 20% ILC600: 18%

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP I 20 July 2024 | Jenny List

J.Tian, LCWS2024

Discovery can be guaranteed

ILC500: 23% ILC550: 20% ILC600: 18%

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

J.Tian, LCWS2024

Discovery can be guaranteed

ILC500: 23% ILC550: 20% ILC600: 18%

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

J.Tian, LCWS2024

Discovery can be guaranteed

ILC500: 23% ILC550: 20% ILC600: 18% How far can analysis improvements push this? 15%? => stay tuned...

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

J.Tian, LCWS2024

Discovery can be guaranteed

ILC500: 23% ILC550: 20% ILC600: 18% How far can analysis improvements push this? 15%? => stay tuned...

Note: this assumes $\lambda = \lambda_{SM}$

Higgs self-coupling Beyond the SM Electroweak Baryogenesis?

Higgs self-coupling Beyond the SM Electroweak Baryogenesis?

Higgs self-coupling Beyond the SM Electroweak Baryogenesis?

Region of interest for electroweak baryogenesis

Higgs self-coupling Beyond the SM Electroweak Baryogenesis?

Conclusions

And Outlook

- The Higgs self-coupling can have large deviations from SM (even if others don't!) lacksquare
- Direct tree-level access to tri-linear Higgs coupling in e+e- collisions at ≥ 500 GeV ullet
- The previous ILC500 projection, from 2014, based on full detector simulation, gave 27% for the SM case, but eq 18% for $\kappa_{\lambda} = 1.5$
- A lot of room for improvement has been identified •
 - at slightly higher ECM, eg 550 GeV, di-Higgs production from WW-fusion starts to contribute => eg 27% \rightarrow 20% for SM case
 - progress in flavour tag, jet reco, kinematic fitting, MEMs, ... 20% \rightarrow x% for SM case

17

Conclusions

And Outlook

- The Higgs self-coupling can have large deviations from SM (even if others don't!)
- Direct tree-level access to tri-linear Higgs coupling in e+e- collisions at ≥ 500 GeV lacksquare
- The previous ILC500 projection, from 2014, based on full detector simulation, gave 27% for the SM case, but eg 18% for $\kappa_{\lambda} = 1.5$
- A lot of room for improvement has been identified
 - at slightly higher ECM, eg 550 GeV, di-Higgs production from WW-fusion starts to contribute => eg 27% \rightarrow 20% for SM case
 - progress in flavour tag, jet reco, kinematic fitting, MEMs, ... 20% \rightarrow x% for SM case

 \geq 5 σ dicovery of λ should be possible at 550 GeV for $\lambda \geq \lambda_{SM}$ in combination with 1 TeV: 10-15% for any value of λ **Stay tuned for a full update!**

17

Backup

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition
- Electroweak phase transition?

 ϕ

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition

 ϕ

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition
- Electroweak phase transition?

 ϕ

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition

- SM with $M_H = 125$ GeV: 2nd order :(
- value of self-coupling λ determines shape of Higgs potential •
- electroweak baryogenesis possible in BSM scenarions with $\lambda > \lambda_{SM}$ (e.g. 2HDM, NMSSM, ...)

ф

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition

1st vs 2nd order phase transition

- origin of matter-antimatter asymmetry: universe must have been out of thermal equilibrium => 1.order phase transition

19

At "Higgs Factory" energies

- can gain some information from loop corrections to single Higgs production, however need
 - better than 1% measurement of $\sigma(ZH)$
 - at 2 E_{CM} to distinguish from change in κ_Z
 - yt from HL-LHC
 - C_{eett} 4-fermion operators
 - very challenging at HL-LHC
 - limited information from ee at 365 GeV
 - full information at \geq 500 GeV with polarised beams!

At "Higgs Factory" energies

- can gain some information from loop corrections to single Higgs production, however need
 - better than 1% measurement of $\sigma(ZH)$
 - at 2 E_{CM} to distinguish from change in κ_Z
 - yt from HL-LHC
 - C_{eett} 4-fermion operators

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

ams!

At "Higgs Factory" energies

- can gain some information from loop corrections to single Higgs production, however need
 - better than 1% measurement of $\sigma(ZH)$
 - at 2 E_{CM} to distinguish from change in κ_Z
 - yt from HL-LHC
 - C_{eett} 4-fermion operators

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

ams!

Top and Higgs physics are intertwined!

The Higgs Potential and the Self-Coupling 2.2 Measurement of the Higgs' Self-coupl

in the SM $\lambda_3 = \lambda_4$: $V(\eta_{\rm H}) = \frac{1}{2} m_{\rm H}^2 \eta_{\rm H}^2 + \frac{\lambda \eta_{\rm H}^3}{2} + \frac{1}{4} \lambda \eta_{\rm H}^4$ v = VEV (246 GeV) $\lambda =$ coupling parameter $\eta_{\rm H} = {\rm physical \ Higgs \ field}$ SM prediction: $\lambda \pm \delta \lambda = \frac{m_H^2}{2v^2} \pm \frac{\delta m_H}{v^2} m_H \sim 0.130 \pm 0.001$

The Higgs self-coupling determines the shape and evolution — of the Higgs potential => the key to understand EWSB and its role in the evolution of the universe!

2 2

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

2.2 Measurement of the Higgs Self-coupling in e^+e^- - o

for different values of λ . Larger value e width of the overall distribution mor lead to a broadening of the distributio leads to an increased depth of the min farant values of intersections version h of the overall distribution more co o a broadening of the distribution wi

a smaller slope. Increasing of λ leads to an increased depth $\overline{\mathbf{ofs}}$ and $\overline{\mathbf{ofs}}$ in the minimum but the positioning of the minimum and the intersections $\sqrt{tr}/th^2\Phi$ -as

From di-Higgs production to λ

Hadron collider

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP | 20 July 2024 | Jenny List

Interference of diagrams with / without triple Higgs vertex k:= $(\delta \lambda / \lambda) / (\delta \sigma / \sigma) > 1/2$

k can be "improved" by using *differential* information

k depends on: process, value of λ and E_{CM}

PLOT. THE Higgs bell-coupling at Linear ever conders profiler in 20 July 2027 profiling List

14 TeV -> 38 TeV: ~8 x larger cross section

ULUT. THE HIGGS DEH-COUPLING AT LINEAR CHE COUNCES FICHER 1 20 JULY 2027 | JEHRY LIST

differential distributions!

PLOT. THE Higgs bell-coupling at Linear ever conders profiler in 20 July 2027 profiling List

differential distributions!

PLOT. THE Higgs bell-coupling at Linear ever conders profiler in 20 July 2027 profiling List

differential distributions!

ULUT. THE HIGGS SEN-COUPLING AT LINEAR CITES FOR THE FILL TO SULVE 2024 FILLING LINEAR CITES FOR THE FILLING STREET STR

DESY. The Higgs Self-coupling at Linear e+e- Colliders | ICHEP I 20 July 2024 | Jenny List

=> VBF(ee/pp)- and Higgsstrahlung (ee) di-Higgs production have orthogonal BSM behaviour

Recent developments

- correct semi-leptonic b/c decays
 - identify leptons in c- / b-jets
 - associate them to secondary / tertiary vertex
 - reconstruct neutrino kinematics (2-fold ambiguity)
- ErrorFlow (jet-by-jet covariance matrix estimate)
- feed both into kinematic fit
- (very) significant improvement in H->bb/cc and Z->bb/cc reconstruction
- ready to be applied to many analyses...

Improvements in reconstructing Z/H -> hadrons (Y. Radkhorrami, L. Reichenbach)

arXiv:2111.14775

Comprehensive Particle Identification (CPID) Full exploitation of PID information

PDG other "plug-and-play" of multiple data sources 0.87 Berotons Berotons 0.84 e.g. at ILD: dE/dx, TOF, cluster shape 0.73 Ξ kaons 0.80 extension through custom inference modules 0.84 pions e.g. MVA/ML models etc. 0.83 0.91 muons 0.90 0.97 electrons 0.99 electrons muons . Protons Pions other Kaons MC truth PDG

> modular and highly configurable PID toolkit > includes default weights for BDT model > status: in production (in MarlinReco)

Confusion matrix for single charged partilces at ILD. <u>U. Einhaus (2023)</u>

Comprehensive Particle Identification (CPID) Full exploitation of PID information

PDG > modular and highly configurable PID toolkit other "plug-and-play" of multiple data sources 0.87 Bed protons 0.84 e.g. at ILD: dE/dx, TOF, cluster shape 0.73 Ξ kaons 0.80 extension through custom inference modules 0.84 pions e.g. MVA/ML models etc. 0.83 0.91 muons > includes default weights for BDT model 0.90 0.97 electrons 0.99 m_{uons} . electrons Protons Pions other Kaons MC truth PDG

- > status: in production (in MarlinReco)

Retrain ML-FlavourTaggers incl. this information => even more improvement?

Confusion matrix for single charged partilces at ILD. <u>U. Einhaus (2023)</u>

- quoted precision on $\delta \lambda_{SM} / \lambda_{SM} = 5\%$
- assumes net detector performance equivalent to current LHC
- to get an idea what this implies, I recommend eg recent presentation by Marcel Demarteau (Argonne) at <u>HiggsCouplings 2019 (Oxford)</u>

FCChh

A Sense Of Scale

Challenges

- d readout electronics at 1mW/channel = 1.5MW of power
- g on a system scale of millions of channels at the level of 50p

	CMS	ATLAS	CMS HGCal	FCC/SPPC
Diameter (m)	15	25		~27m
Length (m)	28.7	46		~70m
B-Field (T)	3.8	2/4		6
EM Cal channels	~80,000	~110,000	4.3M	70M (2x2cm ²)
Had Cal channels	~7,000	~10,000	1.8M	80M (5x5cm ²)

Radiation Damage

• For radii < 50 cm (well into the tracker) the fluence exceeds the value expected at HL-LHC (10¹⁶ cm⁻²) by up to 2 orders of magnitude

• Forward region even worse!

(some) References

- arxiv:1905.03764.v2 (Sep 25, 2019)
- Collider["], PhD Thesis Hamburg University 2016, DESY-THESIS-2016-027
- [J.Tian] J. Tian, "Study of Higgs self-coupling at the ILC based on the full detector simulation at sqrt(s) = 500GeV and sqrt(s) = 1TeV," <u>LC-REP-2013-003</u>
- J. de Blas et al, "The CLIC Potential for new Physics," arxiv:1812.02093
- CLIC," arxiv:1901.05897
- M. Demarteau, "Detectors of the Future," HiggsCoupling 2019, Oxford. https://indico.cern.ch/event/796574/contributions/3376910/

• [ECFA] - Report of the ECFA Working Group on Higgs Couplings at Future Colliders,

• [C.Duerig] - C. Duerig, "Measuring the Higgs Self-coupling at the International Linear

• P. Rololff et al, "Double Higgs boson production and Higgs self-coupling extraction at